The present invention relates to a case flange on an auxiliary power unit and, more particularly, to an adapter that serves as an interface between the case flange and a support structure for the auxiliary power unit.
Auxiliary power units (“APU”) are used in aircraft to provide electrical power and compressed air to various aircraft systems during both ground and in flight operations. For example, when an aircraft is on the ground, the APU may provide electrical power to the electrical system, and compressed air to the environmental control systems, air drive hydraulic pumps, and starting air for the main engines.
Typically, an APU is located in the aft section of the aircraft, at or near the tailcone section. The APU may be mounted within the tailcone section via struts that extend between the APU and airframe structure within the tailcone. To minimize the transfer of vibration between the struts and APU, vibration isolators are typically coupled therebetween. In many cases, a vibration isolator has a housing that includes a strut attachment section and a cone bolt end. A cone bolt adapter is used to adapt the cone bolt end for coupling to an APU attachment interface, such as a gearbox pad cone bolt adapter. To meet weight restrictions, at least a portion of the vibration isolator, the APU attachment interface, and parts of the APU are typically constructed from lightweight materials, such as aluminum.
Recently, regulatory authorities have implemented regulations related to improved fire-resistance. To implement these new regulations, many aircraft may need to include more fire-resistant parts. Consequently, various solutions have been proposed to reconfigure various sections of the aircraft, including the above-identified APU mount structure. One of the proposed solutions includes shielding the APU attachment interface with a fireproof material and changing the material from which the APU attachment interface is constructed. However, because the fireproof material typically weighs more than previously used lightweight material, the overall weight of the aircraft may undesirably increase. Additionally, the material change or addition of material may increase the cost of manufacturing the aircraft.
Thus, there is a need for an APU mount system that is fireproof. Additionally, it is desirable for the system to be lightweight. Moreover, it is desirable for the system to be relatively inexpensive to implement.
The present invention provides a mounting system that is configured to couple an auxiliary power unit (“APU”) to a cone bolt, where the APU includes a case flange having a plurality of spaced apart fastener openings formed therethrough. The mount system comprises a first rib and a first receptacle. The first rib has a portion configured to extend substantially parallel to at least a portion of the case flange, and includes a plurality of openings formed therethrough and disposed in a pattern such that at least selected ones correspond to one or more of the case flange fastener openings. The first receptacle is integrally formed on the first rib and having an outer surface and a funnel-shaped inner surface. The first rib and the first receptacle comprise fireproof material.
In one embodiment, and by way of example only, a mount adapter is provided that is configured to couple an auxiliary power unit (“APU”) to a cone bolt, where the APU includes a case flange having a plurality of spaced apart openings formed therethrough. The mount adapter comprises a first and a second rib and a first receptacle. The first rib has a portion configured to extend substantially parallel to at least a portion of the case flange, and includes a plurality of openings formed therethrough and disposed in a pattern such that at least selected ones correspond to one or more of the case flange fastener openings. The second rib extends substantially parallel to the first rib, and includes a plurality of openings formed therethrough and disposed in a pattern such that at least selected ones correspond to one or more of the case flange fastener openings. The first receptacle is integrally formed between the first and second ribs and has an outer surface and a funnel-shaped inner surface. The first and second ribs and the first receptacle comprise fireproof material.
In another embodiment, and by way of example only, the mount adapter includes a first rib and first and second receptacles. The first rib has a portion configured to extend substantially parallel to at least a portion of the case flange, and includes a first end, a second end, and a plurality of openings formed therethrough. The plurality of openings is disposed in a pattern such that at least selected ones correspond to one or more of the case flange fastener openings. The first receptacle is integrally formed on the first rib first end and has an outer surface and a funnel-shaped inner surface. The second receptacle is integrally formed on the first rib second end and has an outer surface and a funnel-shaped inner surface. The first rib and the first and second receptacles comprise fireproof material.
Other independent features and advantages of the preferred mount system will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Although the invention is described below as being implemented between an auxiliary power unit and a vibration isolator, it will be appreciated that the invention may alternatively be used to couple any device having a cone bolt to another device having a case flange. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention.
With reference now to
An isometric view of the APU 100 and the APU mount system 106 are provided in
The APU mount system 106 is coupled to at least one of the case flanges (in this embodiment, case flange 128) and includes a case mount adapter 138.
The case mount adapter 138 is preferably a unitary component including at least one rib 154 and a receptacle 156 that are integrally formed with each other. The rib 154 is configured to mate with one of the case flanges and has a portion that extends parallel thereto. Additionally, the rib 154 includes a plurality of openings 158 that has a pattern such that at least selected ones correspond with one of the case flange openings.
The receptacle 156 interfaces with the cone bolt 152 and therefore, may have any one of numerous suitable configurations. In one exemplary embodiment, and as shown in
The receptacle 156 may be directly coupled to the rib 154, or alternatively may be coupled to the rib 154 via a fireproof gusset 164, as shown in
Similar to the first rib 154, the second rib 166 includes a plurality of openings 168 that are disposed in a pattern such that at least selected ones correspond with one of the case flange fastener openings. Preferably, however, the second rib openings 168 are sized larger than the first rib openings 158. In one exemplary embodiment, the second rib openings 168 have a diameter suitable to retain plain bushings (not shown). The bushings may be used for installing the fasteners 135 in the case flanges and for clamping two adjacent case flanges to each other.
In another exemplary embodiment of the case mount adapter 138, shown in
A fireproof mounting system has now been provided that is relatively lightweight and easy to install. The system can be configured to be installed on any conventional APU case flange and thus, may be retrofitted into any aircraft.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt to a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.