The present invention relates to auxiliary power units and, more particularly, to a single-spool auxiliary power unit that includes a rotary fuel slinger.
In many aircraft, the main propulsion engines not only provide propulsion for the aircraft, but may also be used to drive various other rotating components such as, for example, generators, compressors, and pumps, to thereby supply electrical and/or pneumatic power. However, when an aircraft is on the ground, its main engines may not be operating. Moreover, in some instances the main propulsion engines may not be capable of supplying the power needed for propulsion as well as the power to drive these other rotating components. Thus, many aircraft include one or more auxiliary power units (APUs) to supplement the main propulsion engines in providing electrical and/or pneumatic power. An APU may also be used to start the propulsion engines.
An APU is, in most instances, a gas turbine engine that includes a combustion system, a power turbine, and a compressor. During operation of the APU, the compressor draws in ambient air, compresses it, and supplies compressed air to the combustion system. The combustion system receives fuel from a fuel source and the compressed air from the compressor, and supplies high-energy combusted air to the power turbine, causing it to rotate. The power turbine includes a shaft that may be used to drive a generator for supplying electrical power, and to drive its own compressor and/or an external load compressor.
The combustion system in an APU may include a combustor, a plurality of fuel injectors, one or more fuel manifolds, and a high-pressure pump. These combustion system components can be relatively expensive to manufacture and install. Moreover, the fuel injectors may foul due to coking of the small fuel passages that extend through the injectors. This fouling can necessitate injector cleaning, which can be costly and time consuming. Fuel injector fouling can also cause hot streaks in both the combustor and downstream hot section, which can reduce the overall life of the combustor and the downstream hot section, and an uneven temperature profile in the APU, which can cause hot corrosion of, and/or thermal fatigue to, the turbine. These latter effects can also increase system operational and ownership costs.
Hence, there is a need for an APU that is both durable and reliable, and that can be fabricated and operated at reduced costs relative to current APUs, by eliminating most, if not all, of the above-noted drawbacks associated with present APU combustion systems. The present invention addresses one or more of these needs.
The present invention provides and auxiliary power unit (APU) that is durable, reliable, and can be fabricated and operated at reduced costs relative to current APUs.
In one embodiment, and by way of example only, an APU includes a compressor, a radial combustor, a rotary fuel slinger, an igniter, a turbine, and a turbine inlet nozzle. The compressor has an air inlet and a compressed air outlet, and is operable to supply a flow of compressed air. The radial combustor includes at least a forward radial liner and an aft radial liner spaced apart from one another to form a combustion chamber therebetween. The forward and aft radial liners each include a plurality of openings in fluid communication with the compressed air outlet, to thereby receive at least a portion of the flow of compressed air therefrom. The plurality of openings are configured to generate a single toroidal recirculation air flow pattern in the combustion chamber. The rotary fuel slinger is adapted to receive a rotational drive force, and is further adapted to receive a flow of fuel from a fuel source. The rotary fuel slinger is configured, upon receipt of the rotational drive force, to centrifuge the received fuel into the combustion chamber. The igniter extends through the aft radial liner and at least partially into the combustion chamber, and is adapted to receive an ignition command and is operable, in response thereto, to ignite the fuel and compressed air in the combustion chamber, to thereby generate combusted gas. The turbine is coupled to receive the combusted gas from the combustion chamber and is configured, in response thereto, to supply at least the rotational drive force to the rotary fuel slinger. The turbine inlet nozzle is disposed between the radial combustor and the turbine inlet, and is configured to change a flow direction of the combusted gas from a radial flow direction to an axial flow direction.
Other independent features and advantages of the preferred APU will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention
Turning now to the description and with reference to
The compressed air from the compressor 102 is directed into the combustion system 104, where it is mixed with fuel supplied from a fuel source (not shown). In the combustion system 104 the fuel/air mixture is combusted, generating high-energy gas. The high-energy gas is then diluted and supplied to the turbine 106. A more detailed description of the combustion system 104, and the various components that provide this functionality, is provided further below.
The high-energy, diluted gas from the combustion system 104 expands through the turbine 106, where it gives up much of its energy and causes the turbine 106 to rotate. The gas is then exhausted from the APU 100 via an exhaust gas outlet 116. As the turbine 106 rotates, it drives, via a turbine shaft 118, various types of equipment that may be mounted in, or coupled to, the engine 100. For example, in the depicted embodiment the turbine 106 drives the compressor 102. It will be appreciated that the turbine may also be used to drive a generator and/or a load compressor and/or other rotational equipment, which are not shown in
With reference now to
The fuel supply tube 204, which is preferably a steel tube, extends into a plenum 222 just forward of the combustor 202 and is adapted to receive a flow of fuel from a non-illustrated fuel source. The fuel supply tube 204 is preferably routed through the plenum 222, and is preferably configured with sufficient flexibility, to allow for any thermal mismatches that may occur between other components and systems in the APU 100 during operation. The fuel supplied to the fuel supply tube 204 passes through the tube 204, and is directed into a fuel housing 224. In the depicted embodiment, the fuel housing 224 is configured as a circumferential cavity, though it will be appreciated that other configurations could also be used. The fuel housing 224 includes a plurality of equally spaced holes 226, through which the fuel is jetted to the rotary fuel slinger 206.
The rotary fuel slinger 206, which is shown more clearly in
The slinger 232 is coupled to, and is preferably formed as an integral part of, the vertical shoulder 230 and thus also rotates with the coupler shaft 228. In the depicted embodiment, the slinger 232 has a substantially cup-shaped radial cross section, and includes a plurality of relatively small, equally spaced holes or slots 234 for (clarity, only one shown in
The igniter 208 extends through the aft annular liner 212 and partially into the combustion chamber 214. The igniter 208, which may be any one of numerous types of igniters, is adapted to receive energy from an exciter (not shown) in response to the exciter receiving an ignition command from an external source, such as an engine controller (not illustrated). In response to the ignition command, the igniter 208 generates a spark of suitable energy, which ignites the fuel-air mixture in the combustion chamber 214, and generates the high-energy combusted gas that is supplied to the turbine 106.
The high-energy combusted gas is supplied from the combustor 202 to the turbine 106 via a turbine inlet nozzle 236. As
Returning once again to
The APU 100 depicted and described herein includes, among other things, a rotary fuel slinger to supply fuel to the combustor. As a result, fuel mixing and atomization inside the combustor is improved due to the injection of a continuous “sheet” of fuel versus a traditional discreet, segregated pattern of injectors arranged circumferentially in an annular combustor. Improved fuel atomization and mixing can result in reduced emissions and a reduced pattern factor, which can increase turbine life. Use of a fuel slinger eliminates the fuel nozzles and associated manifold components, thereby reducing part count, lowering acquisition costs, increasing reliability, improving maintainability, and reducing operating expenses. In addition, the fuel pressure that may be needed to achieve good atomization of the fuel is much lower than in conventional fuel supply system. For example, fuel pressures only slightly above the pressure in the combustion chamber are sufficient. This can alleviate potentially stringent requirements that may be associated with the fuel delivery system.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt to a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/510,104, filed on Oct. 8, 2003.
Number | Name | Date | Kind |
---|---|---|---|
2705401 | Allen et al. | Apr 1955 | A |
2856755 | Szydlowski | Oct 1958 | A |
3018625 | Bachle | Jan 1962 | A |
3020718 | Deacon et al. | Feb 1962 | A |
3077076 | Williams et al. | Feb 1963 | A |
3102393 | Clare | Sep 1963 | A |
3124933 | Stram et al. | Mar 1964 | A |
3204408 | Vincent | Sep 1965 | A |
3304713 | Szydlowski | Feb 1967 | A |
3381471 | Szydlowski | May 1968 | A |
3818696 | Beaufrere | Jun 1974 | A |
3921393 | Bracken, Jr. | Nov 1975 | A |
3932988 | Beaufrere | Jan 1976 | A |
3965699 | Bracken, Jr. | Jun 1976 | A |
3983694 | Bracken, Jr. | Oct 1976 | A |
4000608 | Chute | Jan 1977 | A |
4038815 | Heitmann et al. | Aug 1977 | A |
4040251 | Heitmann et al. | Aug 1977 | A |
4232515 | Brown | Nov 1980 | A |
4232526 | Barbeau | Nov 1980 | A |
4232628 | Shelffo | Nov 1980 | A |
4255935 | Morishita | Mar 1981 | A |
4257236 | Morishita | Mar 1981 | A |
4257238 | Kountz et al. | Mar 1981 | A |
4429527 | Teets | Feb 1984 | A |
4597260 | Balsley et al. | Jul 1986 | A |
4598544 | Williams et al. | Jul 1986 | A |
4819424 | Bak | Apr 1989 | A |
4870825 | Chapman | Oct 1989 | A |
5323602 | Defever | Jun 1994 | A |
6148617 | Williams | Nov 2000 | A |
6609880 | Powis et al. | Aug 2003 | B1 |
Number | Date | Country |
---|---|---|
1 082 232 | Sep 1967 | GB |
PCTUS2004033118 | Feb 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050076650 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
60510104 | Oct 2003 | US |