The present disclosure relates generally to audio/video (A/V) interconnection architectures, and more specifically to an A/V interconnection architecture that, among other features, efficiently supports devices having different audio capabilities and allows for easy expansion.
Historically, A/V component connections were primarily one-way, single-purpose point-to-point analog connections. While analog connections gradually gave way to digital connections, they were still primarily one-way, single-purpose and point-to-point. This caused typical A/V interconnection architectures to involve large masses of cables, especially in high-end consumer and commercial installations.
There have been a variety of attempts to address the problems of traditional A/V interconnection architectures, by incorporating technologies such as IEEE 1394 (firewire), Audio over Ethernet (AoE), Audio over IP (ACIP) and other adaptations of computer network technologies. Some of the more promising approaches involve Audio Video Bridging (AVB) which is the common name for a set of standards set forth under Institute of Electrical and Electronics Engineers (IEEE) 802.2BA, 802.1AS, 802.1Qat and 802.1Qav. AVB implements relatively small extensions to standard IEEE 802.1 media access control (MAC) and bridging to better support audio, including providing precision synchronization and traffic shaping for audio and admission controls. However, the changes are limited to still allow AVB and non-AVB devices to communicate using standard IEEE 802 frames. Only AVB devices can make use of the extended audio-specific features however.
While technologies such as AVB have enabled certain more efficient A/V interconnection architectures, there are still a number of problems in such architectures. One problem in many such architectures is that they do not efficiently support devices having different audio capabilities (e.g., audio processing and output capabilities). For example, consider a typical high-end consumer A/V installation. A variety of A/V components may be disposed in different zones (e.g., a theater room zone, a kitchen zone, a master bedroom zone, etc.) of the structure (e.g., home). While some zones may include A/V components that support advanced types of surround sound audio (e.g., 10.2 surround sound with 12 total channels, 9.3.4 surround sound with 16 total channels, etc.) other zones may include A/V components that only support much more modest types of audio (e.g., stereo sound). In a typical A/V interconnection architecture that uses AVB, audio is typically only encoded in a single format for distribution (e.g., High-Definition Multimedia Interface (HDMI) audio according to a particular surround sound encoding). A/V components that only support much more modest types of audio (e.g., stereo sound) may not be able to process or output the audio stream, such that the audio content may not be available in certain zones of the structures, absent placement of special equipment in such zones.
Another problem is many architectures is that expansion is quite difficult, for example expansion to accommodate an increased number of audio channels that may be supported by certain advanced types of surround sound audio (e.g., 10.2 surround sound with 12 total channels, 9.3.4 surround sound with 16 total channels, etc.). For example, consider an A/V installation in which components in a given room currently support 8 channels of amplified audio. Should the user desire (at installation time, or later) to support types of surround sound audio that utilize more channels, they would generally have to spec or upgrade to entirely different components that support more amplified audio channels. There was no easy way to “add on” a couple of audio channels to the system.
Accordingly, there is a need for a new A/V interconnection architecture that, among other features, efficiently supports devices having different audio capabilities and efficiently allows of “adding on” audio channels to support advanced types of surround sound audio.
In one embodiment, an example A/V interconnection architecture is provided that includes a transmit (TX) A/V endpoint that supports native audio and stereo down-mixed audio on separate Ethernet networks. The TX A/V endpoint includes at least one receive (RX) interface (e.g., an HDMI A/V interface) coupled to an A/V source component (e.g., an audio generating component, such as a Blu-ray player) that receives native audio (and potentially video) therefrom. The native audio from the at least one RX interface is passed to a video network interface that outputs the native audio over an Ethernet video network (e.g., a non-AVB-compliant 10 GbE network) to an RX A/V endpoint coupled to an A/V sink component that is capable of processing or outputting the native audio (and potentially native video). The native audio is also passed to a down-mix audio digital signal processor (DSP) that produces a stereo down-mixed version of the native audio (e.g., a stereo down-mixed HDMI pulse code modulated (PCM) version). The stereo down-mixed version is output over an Ethernet audio network (e.g., an AVB-compliant 1 GbE network) to an audio system (e.g., a multi-zone audio streaming, distribution and amplification system) coupled to an audio sink component (e.g., an audio output component, such as speakers) that is incapable of processing or outputting the native audio.
In another embodiment, an A/V interconnection architecture is provide that enables expandable surround sound. The architecture includes an expandable surround sound system that has an A/V interface (e.g., an HDMI A/V interface) configured to receive native audio from a locally connected A/V source component (e.g., an audio generating component, such as a Blu-ray player), local amplification circuitry configured to amplify a plurality of the audio channels to produce local amplified output channels that drive a plurality of unpowered speakers, a network interface coupled to an audio network (e.g., an AVB-compliant 1 GbE network) and processing circuitry configured to packetize one or more of the audio channels to produce one or more add on channels (as AVB PCM audio) and output the one or more add on channels via the network interface to the audio network to one or more add on devices (e.g., wired powered speakers, powered sound bars, or a wireless audio bridge and one or more wireless powered speakers) having conversion and amplification circuitry. If the number of audio channels for the type of surround sound is less than or equal to a number of the local amplified output channels, the expandable surround sound system may provide surround sound using only the unpowered speakers. If the number of audio channels for the type of surround sound exceeds the number of the local amplified output channels, the expandable surround sound system may be expanded to provides surround sound using both the unpowered speakers and the one or more add on devices that support the additional channels.
It should be understood that a variety of additional features and alternative embodiments may be implemented other than those discussed in this Summary. This Summary is intended simply as a brief introduction to the reader, and does not indicate or imply that the examples mentioned herein cover all aspects of the disclosure, or are necessary or essential aspects of the disclosure.
The description below refers to the accompanying drawings of example embodiments, of which:
The audio network may be connected to audio/control endpoints that may be capable of multi-zone audio streaming, distribution and amplification (referred to hereinafter simply as “all-in-one audio systems”) 130. One example all-in-one audio system 130 is the Pro Audio 4™ audio solution available from Savant Systems, Inc. An all-in-one audio system 130 may be coupled to dedicated audio source components 140 (e.g., a CD player) via native connections (e.g., analog audio, S/PDIF digital audio, RS232/IR, etc.) and audio sink components, such as unpowered speakers 150, via native connections (e.g., amplified analog audio).
The audio network may also be connected to transmitter audio/video/control endpoints (referred to hereinafter simply as “TX A/V endpoints”) 160 either directly or through the video network. The TX A/V endpoints 160 may be coupled to A/V source components 170 (e.g., a Blu-ray player) that source both audio and video via native connections (e.g., HDMI, IR/RS232, standard Ethernet, etc.). As explained in more detail below, the TX A/V endpoints 160 may take various forms, including a 1-port form designed to be coupled to a single A/V source component 170 and a multi-port (e.g., 8-port) form designed to be coupled to multiple A/V source components 170. Communication on the audio network may be conducted using IEEE P1722 format audio packets, in accord with AVB standards.
The audio network may also be connected to powered speakers/sound bars 152 that operate as audio sink components. Powered speakers/sound bars 152 may include an audio processor, amplifier and speakers, so that they can receive using IEEE P1722 format audio packets in accord with AVB standards and generate therefrom sound. The audio network may also be connected to a wireless audio bridge (e.g., an AVB to Wireless Speaker and Audio (WISA) bridge) that operates to convert IEEE P1722 format audio packets to multiple wireless audio streams (e.g., multiple WISA streams). The wireless audio streams (e.g., WISA streams) are then transmitted to wireless powered speakers 156 that amplify and output the audio.
The audio network may also be connected to an expandable surround sound system 158 that is coupled to one or more dedicated A/V source component 170, such as a Blu-ray player, via native connections (e.g., native HDMI), and an A/V sink component 190 (e.g., an ultra high-definition (4K) television) via a native connection (e.g., native HDMI). The expandable surround sound system 158 may also be coupled to audio sink components, such as unpowered speakers 150, via native connections (e.g., amplified analog audio), which may be used to output at least some channels of surround sound audio. If a number of audio channels exceeds the number of locally supported unpowered speakers 150 (or for architectural or other reasons), one or more channels of the audio may be output on the audio network for playback on devices that include amplification circuitry, such as an all-in-one system 130 in combination with unpowered speakers 150, a powered speakers/sound bars 152 or a wireless audio bridge 154 in combination with a wireless powered speakers 156, to provide “add on” channels of audio.
The video network may be connected to receiver audio/video/control endpoints (referred to hereinafter simply as “RX A/V endpoints”) 180. An RX A/V endpoint 180 may be coupled to an A/V sink component 190 (e.g., a 4K television) that sinks video via native connections (e.g. HDMI, RS232/IR, standard Ethernet, etc.). The video network may also be connected to the TX A/V endpoints 160. Communication on the video network may be conducted (on the portion of the video network reserved for A/V) according to HDMI standards.
Referring to both
Likewise, referring to both
An Example RX A/V Endpoint
The RX A/V endpoint 180 may receive audio and video from a TX A/V endpoint 160 via the video network, where the audio is encoded in a native format (e.g., compressed HDMI audio, with advanced surround sound), and pass the audio portion in the native format on a native connection, specifically the HDMI interface 420, to an A/V sink component 190 that supports the native audio. Alternatively, the RX A/V endpoint 180 may receive audio and video from TX A/V endpoints 160 via the video network, where the audio is a stereo down-mixed version (e.g., stereo down-mixed HDMI PCM audio), and pass the audio portion on a native connection, specifically the HDMI interface 420, to an A/V sink component 190 that only supports a stereo down-mixed version.
Example TX A/V Endpoints
In addition to a single-port configuration, RX A/V endpoints 180 may be configured in multi-point configurations (e.g., an 8-port RX A/V endpoint) where certain hardware is shared among all ports.
The 8-port TX A/V endpoint may operate similar to a single port TX A/V endpoint, while providing greater connectivity. The 8-port TX A/V endpoint may receive audio and video on the native A/V interfaces 770 on the TX riser cards from A/V source components 170. The native video may be passed to a video scaler 795 on the respective TX riser card that may scale the video content. The native audio and potentially-scaled video (e.g., the HDMI-originated audio and video) may be passed to the IP video network interface 780 on the respective TX riser card and directly output over the video network (as native HDMI audio and video) via video switch 120 to the RX A/V endpoints 180. Further, the audio portion of the native audio and video may be extracted, and passed to a down-mix audio DSP 750 corresponding to the respective TX riser card, which produces a stereo down-mixed version (e.g., as stereo down-mixed PCM audio) that is then passed to the IP video network interface 780 on the respective TX riser card for output over the video network via video switch 120 to the RX A/V endpoints 180 (e.g., as stereo down-mixed HDMI PCM audio). Further, the stereo down-mixed version (e.g., the HDMI-originated stereo down-mixed PCM audio) is also passed to the AVB network interface 730 and output over the audio network via audio switch 110 (e.g., as AVB PCM audio) to devices such as all-in-one audio systems 130, powered speakers/sound bars 152 and wireless audio bridge 154 in combination with wireless powered speakers 156. In addition, the AVB network interface 730 may receive audio (e.g., AVB-originated PCM audio) from devices such as all-in-one audio systems 130 over the audio network via audio switch 110. This audio (e.g., AVB-originated PCM audio) is passed to an IP video network interface 750 on one of the TX riser cards and output (e.g., as HDMI PCM audio) over the video network to the RX A/V endpoints 180, for playback on A/V sink components 190.
Example Powered Sound Bar and Powered Speaker
The powered speaker/sound bar may be powered by an alternating current (AC) input and power supply. Alternatively, the powered speaker/sound bar may be powered by a direct current (DC), for example, a Power over Ethernet (POE) injected into the audio network and received via the interface 820.
Example Wireless Powered Speaker
Example Wireless Audio Bridge
Example Expandable Surround Sound System
It should be understood that various adaptations and modifications may be made to the above discussed A/V interconnection architecture and its methods of operation. While it is discussed above that operations may be performed on specific hardware devices (such as on TX A/V endpoints 160, the RX A/V endpoints 180, all-in-one audio systems 130, powered speaker/sound bars 152, wireless audio bridges 154, expandable surround sound system 158, etc.), it should be understood that operations may be executed on different hardware. Additionally, it should be understood that at least some of the functionality described above to be implemented in software. In general functionality may be implemented in software, hardware or various combinations thereof. Software implementations may include electronic device-executable instructions (e.g., computer-executable instructions) stored in a non-transitory electronic device-readable medium (e.g., a non-transitory computer-readable medium), such as a volatile or persistent memory, a hard-disk, a compact disk (CD), or other tangible medium. Hardware implementations may include logic circuits, application specific integrated circuits, and/or other types of hardware components. Further, combined software/hardware implementations may include both electronic device-executable instructions stored in a non-transitory electronic device-readable medium, as well as one or more hardware components, for example, processors, memories, etc. Above all, it should be understood that the above embodiments are meant to be taken only by way of example.
The present application is a continuation of Patent Cooperation Treaty patent application number PCT/US2018/017087, filed on Feb. 6, 2018, titled “A/V Interconnection Architecture Including an Audio Down-Mixing Transmitter A/V Endpoint and Distributed Channel Amplification”, which claims the benefit of U.S. provisional patent application No. 62/454,915, filed on Feb. 6, 2017 and U.S. provisional patent application No. 62/555,029, filed on Sep. 6, 2017, all of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62454915 | Feb 2017 | US | |
62555029 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/017087 | Feb 2018 | US |
Child | 16254015 | US |