An avatar is a posable, virtual representation of a subject—e.g., a human subject. At the present time, avatars are used commonly in video games to represent players, but many other applications are possible as well. For applications outside the world of gaming, the representation of a human subject as an avatar may be limited by the cost and complexity of constructing an avatar of suitable fidelity. In particular, capturing a subject's shape and facial features in enough detail to construct a life-like avatar may require lengthy image acquisition using expensive, studio-quality equipment.
One embodiment of this disclosure provides a method for constructing an avatar of a human subject. The method includes acquiring a depth map of the subject, obtaining a virtual skeleton of the subject based on the depth map, and harvesting from the virtual skeleton a set of characteristic metrics. Such metrics correspond to distances between predetermined points of the virtual skeleton. In this example method, the characteristic metrics are provided as input to an algorithm trained using machine learning. The algorithm may be trained using an actual human model in a range of poses, and a range of human models in a single pose, to output a virtual body mesh as a function of the characteristic metrics. The method also includes constructing a virtual head mesh distinct from the virtual body mesh, with facial features resembling those of the subject, and connecting the virtual body mesh to the virtual head mesh.
This Summary is provided to introduce, in simplified form, a selection of concepts that are further described in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted in any part of this disclosure.
Aspects of this disclosure will now be described by example and with reference to the illustrated embodiments listed above. Components, process steps, and other elements that may be substantially the same in one or more embodiments are identified coordinately and are described with minimal repetition. It will be noted, however, that elements identified coordinately may also differ to some degree. It will be further noted that the drawing figures included in this disclosure are schematic and generally not drawn to scale. Rather, the various drawing scales, aspect ratios, and numbers of components shown in the figures may be purposely distorted to make certain features or relationships easier to see.
An ‘avatar’, in accordance with the present disclosure, is a computer representation of a human subject. An avatar may be embodied by one or more suitable data structures, including, but not limited to, a polygonal mesh. In some embodiments, the avatar may be rendered for display. In other embodiments, the avatar is not rendered for display. The balance of this disclosure presents various systems and methods for constructing an avatar of a human subject. These systems and methods may be used in various applications—e.g., video games, interactive training software, physical therapy, or in a retail setting. More generally, an avatar can be used wherever a virtual representation of the subject is desired.
One example application of an avatar in a retail setting is to enable a customer to ‘try on’ various items virtually. Such items may include clothing, eyewear, footwear, accessories, prostheses, jewelry, tattoos, and/or make-up, as examples. Having augmented her avatar with such items in virtual form, the customer may be able to predict how she might look when wearing the corresponding actual items. This approach can be used to pre-screen the items prior to an actual visit to the fitting room, to save time. In addition, the customer may elect to share with others the images of her avatar augmented with the virtual items. In some scenarios, the sharing can be done remotely—via email or cell phone, for example—with friends or family members not physically present. In this manner, the customer may profit from another's counsel before making a decision to purchase an item. In an avatar-based on-line retail experience, the entire process of selecting an item, trying the item on, and then purchasing the item can be conducted in the privacy of the customer's home or workplace.
With current technology, there is a steep fidelity-versus-cost curve for avatar construction. Low-fidelity avatars suitable for video-game applications can be constructed simply, using inexpensive equipment. However, the applications noted above may require an avatar of much higher fidelity. A high-fidelity avatar—one that actually resembles a given human subject—is typically constructed using specialized, studio-quality equipment. In particular, a high-resolution depth camera may be used to acquire the three-dimensional image data on which the avatar is based.
In recent years, state-of-the-art consumer depth cameras have appeared in the form of a user-input device for video-game systems and personal computers. One example is the Kinect® system from Microsoft Corporation of Redmond, Wash. The systems and methods described herein may use depth cameras to furnish depth data from which a life-like avatar of a human subject is constructed. In these systems and methods, the resolution of the avatar is not limited by the resolution of the depth camera. Instead, this approach applies a sophisticated head- and body-modeling technique in which a set of characteristic metrics derived from the depth data guides the construction of a high-resolution, life-like body model, which there may be optionally connected to an analogously constructed head model and optionally augmented with life-like skin color and skin texture.
In the embodiment illustrated in
In one embodiment, image data from a pair of stereoscopic cameras may be co-registered and mathematically combined to yield a depth map. In other embodiments, user-input device 14A may be configured to project a structured infrared illumination comprising numerous, discrete features (e.g., lines or dots). The depth camera may be configured to image the structured illumination reflected from the subject. Based on the spacings between adjacent features in the various regions of the imaged subject, a depth map of the subject may be constructed.
In other embodiments, user-input device 14A may be configured to project a pulsed infrared illumination. A pair of cameras may be configured to detect the pulsed illumination reflected from the subject. Both cameras may include an electronic shutter synchronized to the pulsed illumination, but the integration times for the cameras may differ such that a pixel-resolved time-of-flight of the pulsed illumination, from the source to the subject and then to the cameras, is discernable from the relative amounts of light received in corresponding pixels of the two cameras.
The configurations described above enable various methods for constructing an avatar of a human subject. Some such methods are now described, by way of example, with continued reference to the above configurations. It will be understood, however, that the methods here described, and others within the scope of this disclosure, may be enabled by different configurations as well. The methods may be entered upon any time system 10 is operating, and may be executed repeatedly. Some of the process steps described and/or illustrated herein may, in some embodiments, be omitted without departing from the scope of this disclosure. Likewise, the indicated sequence of the process steps may not always be required to achieve the intended results, but is provided for ease of illustration and description. One or more of the illustrated actions, functions, or operations may be performed repeatedly, depending on the particular strategy being used.
At 34 a virtual skeleton of the subject is obtained based on the depth map acquired.
In one embodiment, each joint may be assigned various parameters—e.g., Cartesian coordinates specifying joint position, angles specifying joint rotation, and additional parameters specifying a conformation of the corresponding body part (hand open, hand closed, etc.). The virtual skeleton may take the form of a data structure including any or all of these parameters for each joint. In this manner, the metrical data defining the virtual skeleton—its size, shape, orientation, position, etc.—may be assigned to the joints.
Returning now to
Continuing in
At 44 the set of characteristic metrics harvested in this manner is provided as input to an algorithm configured to output a virtual body mesh resembling the subject's body. In other words, the algorithm computes the virtual body mesh as a function of the characteristic metrics. In some embodiments, the algorithm used for this purpose may be an algorithm trained using machine learning. More particularly, the algorithm may be one that has been trained using an actual human model in a range of poses and a range of human models in a single pose, as described in further detail below.
In one non-limiting embodiment, the virtual body mesh is constructed by deformation of a virtual body-mesh template M. The template is provided with a specific origin pose and shape captured from 360-degree, 3D scans of an actual human model. The pose and shape variations applied to this template are computed as affine transformations of each triangle of the template mesh M. Specifically, a triangle pk is identified by its edge vk,j, which is defined as the vector from the 0th vertex to the jth vertex: vk,j=yk,j−yk,0 for j=1, 2. Then, for a body mesh in a new pose and with a new shape, each new triangle p*k is computed as a transformation of the corresponding template-mesh triangle pk. In symbols,
vk,j*=RI[k]SkQkvk,j,
where RI is the rotation of its rigid bone in the Ith articulated skeleton. All triangles belonging to the same Ith-skeleton are provided the same rotation, thus RI=RI[k]. Qk is a 3×3 affine transformation matrix used to describe the deformation of each triangle edge caused by a change in pose. Sk represents the body-shape deformation. Accordingly, a rotation, a body-pose transform, and a body shape transform are each applied to the virtual body-mesh template to obtain the virtual body mesh.
In this system, the rotation RIs are obtained as described above, in the context of method step 34. The unknown Qk is computed from linear regression as follows. A range of 3D meshes of a single human model are captured in different poses. These meshes Mi have the same topology and affine transformation Qki are computed by minimizing
Here, ws adjusts the weight of the second term. Given the set of estimated Q matrices and the known R represented by twist vectors, the relationship between Q and R can be linearly regressed. Thus, Q can be predicted from R, and the linear transformation from R to Q is stored in the system for fast computation.
For obtaining the body shape transform S, a range of 3D meshes of different human models are captured in the same pose. S is computed from R and Q by minimizing
To better represent the natural differences between female and male body types, the training process is applied on female models and male models separately. The characteristic metrics are also measured in 3D meshes. A linear map is built upon the metrics and shape transform matrices S that are represented by a 9×N vector, here N is the number of triangle faces of the template mesh. A principal component analysis (PCA) is performed on this linear space to capture the dominating subspace. Thus, given a set of characteristic metrics—for instance a set including a height, an arm length, a shoulder width, a chest radius and a waist radius—the body shape transform S can be approximated by PCA.
A set of characteristic metrics are measured, and rotation Rs obtained for a given depth map and the virtual skeleton. Q and S can be computed as described in the foregoing paragraphs. Then, the final mesh is computed by solving a least squares system:
vk,j*=RI[k]SkQkvk,j,
where vk,j*=yk,j*−yk,0* variables. Since this model is translation invariant, a vertex is anchored to a particular location by setting y0=(0,0,0).
Returning again to
ΣkΣj=1,2∥vk,j*−RI[k]SkQkvk,j∥2+weight×distance(mesh,Depthmap).
The final mesh is initialized from the result provided two equations above, and the characteristic metrics are initialized from the measurement. The distance between the mesh and the depth map is the summation of the squared distance between all the pairs of nearest close points.
At 50 of method 30, a virtual head mesh distinct from the virtual body mesh is constructed. The virtual head mesh may be constructed based on a second depth map different from the first depth map referred to hereinabove. The second depth map may be acquired when the subject is closer to the depth camera than when the first depth map is acquired. In one embodiment, the second depth map may be a composite of three different image captures of the subject's head: a front view, a view turned thirty degrees to the right, and a view turned thirty degrees to the left. In the second depth map, the subject's facial features may be resolved more finely than in the first depth map. In other embodiments, the subject's head may be rotated by angles greater than or less than thirty degrees between successive image captures.
To construct the virtual head mesh, a virtual head-mesh template may be deformed to minimize distance between points on the second depth map and corresponding points on the virtual head mesh. The virtual head mesh may then be augmented with color and texture derived from one or more image captures from the color camera of the user-input device. In this manner, the virtual head mesh may be personalized to resemble the actual human subject—viz., it may present facial features resembling those of the subject both in shape and in skin color/texture.
At 52 the virtual body mesh is connected to the virtual head mesh. In this step, the head of the virtual body template mesh is first cut out, and then is connected to the virtual head template mesh by triangulating the two open boundaries of the template meshes. The connected model is then stored in the system and loaded when the virtual body mesh and the virtual head mesh are ready. The two template meshes are replaced by two virtual meshes, respectively, since they have the same connectivities. The scale of the virtual head mesh is adjusted according to the proportion consistent with the virtual body mesh. The vertices around the neck are also smoothed, while the other vertices are held fixed. In this manner, a geometrically realistic and seamless head/body mesh may be constructed.
At 54 the virtual body mesh is augmented with a skin color and/or skin texture appropriate for the subject. In some embodiments, the skin color and/or skin texture may be selected based on color-image data from user-input device 14A—such as color image data from a region that includes the subject's face. In other words, the skin color and/or skin texture applied to the virtual body mesh may be synthesized to match that of the subject's face. In one embodiment, the system first selects a body texture image in a pre-designed database and then modulates the low frequency color component so that its overall color is consistent with the color of the face skin.
In the approach contemplated herein, virtually any input mechanism may be used to specify the initial and subsequent desired poses for the avatar. Such mechanisms may include spoken commands directing body movement, or selection from among a menu of body movements and/or gestures via a user interface. In yet another embodiment, real-time skeletal tracking with user-input device 14A may guide the movement of the animated avatar. More particularly, the subject may specify the movement of the avatar simply by moving her own body in the manner desired for the avatar. The user-input device may be configured to track the movement of the subject's body, and provide a stream of gesture data to the personal computer on which method 60 is enacted.
In some embodiments, the methods and processes described above may be tied to a computing system of one or more computing devices. In particular, such methods and processes may be implemented as a computer-application program or service, an application-programming interface (API), a library, and/or other computer-program product.
Computing system 16 includes a logic subsystem 22 and a storage subsystem 24. Computing system 16 may optionally include a display subsystem 18, input-device subsystem 14, communication subsystem 76, and/or other components not shown in
Logic subsystem 22 includes one or more physical devices configured to execute instructions. For example, the logic subsystem may be configured to execute instructions that are part of one or more applications, services, programs, routines, libraries, objects, components, data structures, or other logical constructs. Such instructions may be implemented to perform a task, implement a data type, transform the state of one or more components, or otherwise arrive at a desired result.
The logic subsystem may include one or more processors configured to execute software instructions. Additionally or alternatively, the logic subsystem may include one or more hardware or firmware logic machines configured to execute hardware or firmware instructions. The processors of the logic subsystem may be single-core or multi-core, and the programs executed thereon may be configured for sequential, parallel or distributed processing. The logic subsystem may optionally include individual components that are distributed among two or more devices, which can be remotely located and/or configured for coordinated processing. Aspects of the logic subsystem may be virtualized and executed by remotely accessible networked computing devices configured in a cloud-computing configuration.
Storage subsystem 24 includes one or more physical, non-transitory, devices configured to hold data and/or instructions executable by the logic subsystem to implement the herein-described methods and processes. When such methods and processes are implemented, the state of storage subsystem 24 may be transformed—e.g., to hold different data.
Storage subsystem 24 may include removable media and/or built-in devices. Storage subsystem 24 may include optical memory devices (e.g., CD, DVD, HD-DVD, Blu-Ray Disc, etc.), semiconductor memory devices (e.g., RAM, EPROM, EEPROM, etc.) and/or magnetic memory devices (e.g., hard-disk drive, floppy-disk drive, tape drive, MRAM, etc.), among others. Storage subsystem 24 may include volatile, nonvolatile, dynamic, static, read/write, read-only, random-access, sequential-access, location-addressable, file-addressable, and/or content-addressable devices.
It will be appreciated that storage subsystem 24 includes one or more physical, non-transitory devices. However, in some embodiments, aspects of the instructions described herein may be propagated in a transitory fashion by a pure signal—e.g., an electromagnetic or optical signal, etc.—that is not held by a physical device for a finite duration. Furthermore, data and/or other forms of information pertaining to the present disclosure may be propagated by a pure signal.
In some embodiments, aspects of logic subsystem 22 and of storage subsystem 24 may be integrated together into one or more hardware-logic components through which the functionally described herein may be enacted, at least in part. Such hardware-logic components may include field-programmable gate arrays (FPGAs), program- and application-specific integrated circuits (PASIC/ASICs), program- and application-specific standard products (PSSP/ASSPs), system-on-a-chip (SOC) systems, and complex programmable logic devices (CPLDs), for example.
The terms “module,” “program,” and “engine” may be used to describe an aspect of computing system 16 implemented to perform a particular function. In some cases, a module, program, or engine may be instantiated via logic subsystem 22 executing instructions held by storage subsystem 24. It will be understood that different modules, programs, and/or engines may be instantiated from the same application, service, code block, object, library, routine, API, function, etc. Likewise, the same module, program, and/or engine may be instantiated by different applications, services, code blocks, objects, routines, APIs, functions, etc. The terms “module,” “program,” and “engine” may encompass individual or groups of executable files, data files, libraries, drivers, scripts, database records, etc.
It will be appreciated that a “service”, as used herein, is an application program executable across multiple user sessions. A service may be available to one or more system components, programs, and/or other services. In some implementations, a service may run on one or more server-computing devices.
When included, display subsystem 18 may be used to present a visual representation of data held by storage subsystem 24. This visual representation may take the form of a graphical user interface (GUI). As the herein described methods and processes change the data held by the storage subsystem, and thus transform the state of the storage subsystem, the state of display subsystem 18 may likewise be transformed to visually represent changes in the underlying data. Display subsystem 18 may include one or more display devices utilizing virtually any type of technology. Such display devices may be combined with logic subsystem 22 and/or storage subsystem 24 in a shared enclosure, or such display devices may be peripheral display devices.
When included, communication subsystem 76 may be configured to communicatively couple computing system 16 with one or more other computing devices. Communication subsystem 76 may include wired and/or wireless communication devices compatible with one or more different communication protocols. As non-limiting examples, the communication subsystem may be configured for communication via a wireless telephone network, or a wired or wireless local- or wide-area network. In some embodiments, the communication subsystem may allow computing system 16 to send and/or receive messages to and/or from other devices via a network such as the Internet.
The subject matter of the present disclosure includes all novel and non-obvious combinations and sub-combinations of the various processes, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.
This application is a continuation of Patent Cooperation Treaty (PCT) Application PCT/CN2012/077303 filed 21 Jun. 2012, entitled AVATAR CONSTRUCTION USING DEPTH CAMERA. The entirety of this application is hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4288078 | Lugo | Sep 1981 | A |
4627620 | Yang | Dec 1986 | A |
4630910 | Ross et al. | Dec 1986 | A |
4645458 | Williams | Feb 1987 | A |
4695953 | Blair et al. | Sep 1987 | A |
4702475 | Elstein et al. | Oct 1987 | A |
4711543 | Blair et al. | Dec 1987 | A |
4751642 | Silva et al. | Jun 1988 | A |
4796997 | Svetkoff et al. | Jan 1989 | A |
4809065 | Harris et al. | Feb 1989 | A |
4817950 | Goo | Apr 1989 | A |
4843568 | Krueger et al. | Jun 1989 | A |
4893183 | Nayar | Jan 1990 | A |
4901362 | Terzian | Feb 1990 | A |
4925189 | Braeunig | May 1990 | A |
5101444 | Wilson et al. | Mar 1992 | A |
5148154 | MacKay et al. | Sep 1992 | A |
5184295 | Mann | Feb 1993 | A |
5229754 | Aoki et al. | Jul 1993 | A |
5229756 | Kosugi et al. | Jul 1993 | A |
5239463 | Blair et al. | Aug 1993 | A |
5239464 | Blair et al. | Aug 1993 | A |
5288078 | Capper et al. | Feb 1994 | A |
5295491 | Gevins | Mar 1994 | A |
5320538 | Baum | Jun 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5385519 | Hsu et al. | Jan 1995 | A |
5405152 | Katanics et al. | Apr 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5423554 | Davis | Jun 1995 | A |
5454043 | Freeman | Sep 1995 | A |
5469740 | French et al. | Nov 1995 | A |
5495576 | Ritchey | Feb 1996 | A |
5516105 | Eisenbrey et al. | May 1996 | A |
5524637 | Erickson | Jun 1996 | A |
5534917 | MacDougall | Jul 1996 | A |
5563988 | Maes et al. | Oct 1996 | A |
5577981 | Jarvik | Nov 1996 | A |
5580249 | Jacobsen et al. | Dec 1996 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5597309 | Riess | Jan 1997 | A |
5616078 | Oh | Apr 1997 | A |
5617312 | Iura et al. | Apr 1997 | A |
5638300 | Johnson | Jun 1997 | A |
5641288 | Zaenglein, Jr. | Jun 1997 | A |
5682196 | Freeman | Oct 1997 | A |
5682229 | Wangler | Oct 1997 | A |
5690582 | Ulrich et al. | Nov 1997 | A |
5703367 | Hashimoto et al. | Dec 1997 | A |
5704837 | Iwasaki et al. | Jan 1998 | A |
5715834 | Bergamasco et al. | Feb 1998 | A |
5875108 | Hoffberg et al. | Feb 1999 | A |
5877803 | Wee et al. | Mar 1999 | A |
5913727 | Ahdoot | Jun 1999 | A |
5933125 | Fernie et al. | Aug 1999 | A |
5980256 | Carmein | Nov 1999 | A |
5989157 | Walton | Nov 1999 | A |
5995649 | Marugame | Nov 1999 | A |
6005548 | Latypov et al. | Dec 1999 | A |
6009210 | Kang | Dec 1999 | A |
6054991 | Crane et al. | Apr 2000 | A |
6066075 | Poulton | May 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6073489 | French et al. | Jun 2000 | A |
6077201 | Cheng | Jun 2000 | A |
6098458 | French et al. | Aug 2000 | A |
6100896 | Strohecker et al. | Aug 2000 | A |
6101289 | Kellner | Aug 2000 | A |
6130677 | Kunz | Oct 2000 | A |
6141463 | Covell et al. | Oct 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6148003 | Van Dort | Nov 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6159100 | Smith | Dec 2000 | A |
6173066 | Peurach et al. | Jan 2001 | B1 |
6181343 | Lyons | Jan 2001 | B1 |
6188777 | Darrell et al. | Feb 2001 | B1 |
6195104 | Lyons | Feb 2001 | B1 |
6215890 | Matsuo et al. | Apr 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6226396 | Marugame | May 2001 | B1 |
6229913 | Nayar et al. | May 2001 | B1 |
6256033 | Nguyen | Jul 2001 | B1 |
6256400 | Takata et al. | Jul 2001 | B1 |
6283860 | Lyons et al. | Sep 2001 | B1 |
6289112 | Jain et al. | Sep 2001 | B1 |
6299308 | Voronka et al. | Oct 2001 | B1 |
6308565 | French et al. | Oct 2001 | B1 |
6316934 | Amorai-Moriya et al. | Nov 2001 | B1 |
6363160 | Bradski et al. | Mar 2002 | B1 |
6384819 | Hunter | May 2002 | B1 |
6411744 | Edwards | Jun 2002 | B1 |
6430997 | French et al. | Aug 2002 | B1 |
6476834 | Doval et al. | Nov 2002 | B1 |
6496598 | Harman | Dec 2002 | B1 |
6503195 | Keller et al. | Jan 2003 | B1 |
6539931 | Trajkovic et al. | Apr 2003 | B2 |
6570555 | Prevost et al. | May 2003 | B1 |
6633294 | Rosenthal et al. | Oct 2003 | B1 |
6640202 | Dietz et al. | Oct 2003 | B1 |
6661918 | Gordon et al. | Dec 2003 | B1 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6731799 | Sun et al. | May 2004 | B1 |
6738066 | Nguyen | May 2004 | B1 |
6765726 | French et al. | Jul 2004 | B2 |
6788809 | Grzeszczuk et al. | Sep 2004 | B1 |
6801637 | Voronka et al. | Oct 2004 | B2 |
6873723 | Aucsmith et al. | Mar 2005 | B1 |
6876496 | French et al. | Apr 2005 | B2 |
6901379 | Balter et al. | May 2005 | B1 |
6937742 | Roberts et al. | Aug 2005 | B2 |
6950534 | Cohen et al. | Sep 2005 | B2 |
7003134 | Covell et al. | Feb 2006 | B1 |
7036094 | Cohen et al. | Apr 2006 | B1 |
7038855 | French et al. | May 2006 | B2 |
7039676 | Day et al. | May 2006 | B1 |
7042440 | Pryor et al. | May 2006 | B2 |
7050606 | Paul et al. | May 2006 | B2 |
7058204 | Hildreth et al. | Jun 2006 | B2 |
7060957 | Lange et al. | Jun 2006 | B2 |
7062454 | Giannini et al. | Jun 2006 | B1 |
7113918 | Ahmad et al. | Sep 2006 | B1 |
7121946 | Paul et al. | Oct 2006 | B2 |
7170492 | Bell | Jan 2007 | B2 |
7184048 | Hunter | Feb 2007 | B2 |
7202898 | Braun et al. | Apr 2007 | B1 |
7222078 | Abelow | May 2007 | B2 |
7227526 | Hildreth et al. | Jun 2007 | B2 |
7259747 | Bell | Aug 2007 | B2 |
7308112 | Fujimura et al. | Dec 2007 | B2 |
7317836 | Fujimura et al. | Jan 2008 | B2 |
7348963 | Bell | Mar 2008 | B2 |
7359121 | French et al. | Apr 2008 | B2 |
7367887 | Watabe et al. | May 2008 | B2 |
7379563 | Shamaie | May 2008 | B2 |
7379566 | Hildreth | May 2008 | B2 |
7389591 | Jaiswal et al. | Jun 2008 | B2 |
7412077 | Li et al. | Aug 2008 | B2 |
7421093 | Hildreth et al. | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7436496 | Kawahito | Oct 2008 | B2 |
7450736 | Yang et al. | Nov 2008 | B2 |
7452275 | Kuraishi | Nov 2008 | B2 |
7460690 | Cohen et al. | Dec 2008 | B2 |
7489812 | Fox et al. | Feb 2009 | B2 |
7536032 | Bell | May 2009 | B2 |
7555142 | Hildreth et al. | Jun 2009 | B2 |
7560701 | Oggier et al. | Jul 2009 | B2 |
7570805 | Gu | Aug 2009 | B2 |
7574020 | Shamaie | Aug 2009 | B2 |
7576727 | Bell | Aug 2009 | B2 |
7590262 | Fujimura et al. | Sep 2009 | B2 |
7593552 | Higaki et al. | Sep 2009 | B2 |
7598942 | Underkoffler et al. | Oct 2009 | B2 |
7607509 | Schmiz et al. | Oct 2009 | B2 |
7620202 | Fujimura et al. | Nov 2009 | B2 |
7668340 | Cohen et al. | Feb 2010 | B2 |
7680298 | Roberts et al. | Mar 2010 | B2 |
7683954 | Ichikawa et al. | Mar 2010 | B2 |
7684592 | Paul et al. | Mar 2010 | B2 |
7701439 | Hillis et al. | Apr 2010 | B2 |
7702130 | Im et al. | Apr 2010 | B2 |
7704135 | Harrison, Jr. | Apr 2010 | B2 |
7710391 | Bell et al. | May 2010 | B2 |
7729530 | Antonov et al. | Jun 2010 | B2 |
7746345 | Hunter | Jun 2010 | B2 |
7760182 | Ahmad et al. | Jul 2010 | B2 |
7809167 | Bell | Oct 2010 | B2 |
7834846 | Bell | Nov 2010 | B1 |
7852262 | Namineni et al. | Dec 2010 | B2 |
RE42256 | Edwards | Mar 2011 | E |
7898522 | Hildreth et al. | Mar 2011 | B2 |
8035612 | Bell et al. | Oct 2011 | B2 |
8035614 | Bell et al. | Oct 2011 | B2 |
8035624 | Bell et al. | Oct 2011 | B2 |
8072470 | Marks | Dec 2011 | B2 |
20010034668 | Whitworth | Oct 2001 | A1 |
20070229498 | Matusik et al. | Oct 2007 | A1 |
20080026838 | Dunstan et al. | Jan 2008 | A1 |
20080071559 | Arrasvuori | Mar 2008 | A1 |
20080163344 | Yang | Jul 2008 | A1 |
20080252637 | Berndt et al. | Oct 2008 | A1 |
20090163262 | Kang | Jun 2009 | A1 |
20100030578 | Siddique et al. | Feb 2010 | A1 |
20100070384 | Kruusmaa et al. | Mar 2010 | A1 |
20100097375 | Tadaishi et al. | Apr 2010 | A1 |
20100111370 | Black et al. | May 2010 | A1 |
20100134490 | Corazza et al. | Jun 2010 | A1 |
20100302138 | Poot et al. | Dec 2010 | A1 |
20110022965 | Lawrence et al. | Jan 2011 | A1 |
20110025689 | Perez et al. | Feb 2011 | A1 |
20110043610 | Ren et al. | Feb 2011 | A1 |
20110148864 | Lee et al. | Jun 2011 | A1 |
20110157306 | Lin et al. | Jun 2011 | A1 |
20110234581 | Eikelis et al. | Sep 2011 | A1 |
20110234589 | Lee et al. | Sep 2011 | A1 |
20110292036 | Sali et al. | Dec 2011 | A1 |
20120019517 | Corazza et al. | Jan 2012 | A1 |
20120070070 | Litvak | Mar 2012 | A1 |
20120113106 | Choi et al. | May 2012 | A1 |
20120183238 | Savvides et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
1928908 | Mar 2007 | CN |
101254344 | Sep 2008 | CN |
102221886 | Oct 2011 | CN |
102222329 | Oct 2011 | CN |
102222347 | Oct 2011 | CN |
102508867 | Jun 2012 | CN |
0583061 | Feb 1994 | EP |
08044490 | Feb 1996 | JP |
9310708 | Jun 1993 | WO |
9717598 | May 1997 | WO |
9944698 | Sep 1999 | WO |
2009026726 | Mar 2009 | WO |
Entry |
---|
Aitpayev, et al., “Creation of 3D Human Avatar using Kinect”, Retrieved at <<http://www.asian-transactions.org/Journals/Vol01Issue06/ATFECM/ATFECM-30120064.pdf>>, Proceedings: Asian Transactions on Fundamentals of Electronics, Communication & Multimedia (ATFECM) vol. 01 Issue 05, pp. 1-3. |
“AdDude's Insights”, Retrieved at <<http://lifson.com/?tag=augmented-reality>>, Apr. 9, 2010, 13 Pages. |
Aggarwal et al., “Human Motion Analysis: A Review”, IEEE Nonrigid and Articulated Motion Workshop, Jul. 1997, University of Texas at Austin, Austin, TX. |
Ashdown, et al., “S08-CR03 Development of Visual Fit Assessment Tool for Apparel Firm”, Retrieved at <<http://www.ntcresearch.org/pdf-rpts/AnRp08/S08-CR03-A8.pdf>>, in National Textile Center Annual Report, Nov. 2008, pp. 1-7. |
Azarbayejani et al., “Visually Controlled Graphics”, Jun. 1993, vol. 15, No. 6, IEEE Transactions on Pattern Analysis and Machine Intelligence. |
“Behind an Inspired Room. Or, how I revamped a living room from 793 miles away!”, Blog website, InspiredRoomDesign.com, Sep. 15, 2009, Inspired Room Design, LLC, Site by BrightBridge Studios, http://inspiredroomdesign.com/blog.php?post=19. |
Breen et al., “Interactive Occlusion and Collusion of Real and Virtual Objects in Augmented Reality”, Technical Report ECRC-95-02, Feb. 1995, European Computer-Industry Research Center GmbH, Munich, Germany. |
Brogan et al., “Dynamically Simulated Characters in Virtual Environments”, Sep./Oct. 1998, pp. 2-13, vol. 18, Issue 5, IEEE Computer Graphics and Applications. |
State Intellectual Property Office of China, Office Action issued in Chinese Patent Application No. 201110087429.5, Dec. 4, 2012, 6 pages. |
State Intellectual Property Office of China, Office Action issued in Chinese Patent Application No. 201110087429.5, Jul. 30, 2013, 13 pages. |
Ferenstein, Gregory., “KinectShop: The Next Generation of Shopping”, Retrieved at <<http://www.fastcompany.com/1758674/the-next-generation-of-shopping-kinectshop-exclusive>>, Jun. 9, 2011, 4 Pages. |
Fisher et al., “Virtual Environment Display System”, ACM Workshop on Interactive 3D Graphics, Oct. 1986, Chapel Hill, NC. |
“Fits.me Virtual Fitting Room”, Retrieved at <<http://www.fits.me/>>, Fits.me, Dec. 27, 2011, 1 Page. |
Freeman et al., “Television Control by Hand Gestures”, Dec. 1994, Mitsubishi Electric Research Laboratories, TR94-24, Caimbridge, MA. |
Granieri et al., “Simulating Humans in VR”, The British Computer Society, Oct. 1994, Academic Press. |
Hasegawa et al., “Human-Scale Haptic Interaction with a Reactive Virtual Human in a Real-Time Physics Simulator”, Jul. 2006, vol. 4, No. 3, Article 6C, ACM Computers in Entertainment, New York, NY. |
Hauswiesner, et al., “Free Viewpoint Virtual Try-On With Commodity Depth Cameras”, Retrieved at <<http://www.icg.tugraz.at/kinectclothpaper>>, In Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry, Dec. 11-12, 2011, 8 Pages. |
He, “Generation of Human Body Models”, Apr. 2005, University of Auckland, New Zealand, 111 pages. |
Hongo et al., “Focus of Attention for Face and Hand Gesture Recognition Using Multiple Cameras”, Mar. 2000, pp. 156-161, 4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France. |
Isard et al., “CONDENSATION—Conditional Density Propagation for Visual Tracking”, Aug. 1998, pp. 5-28, International Journal of Computer Vision 29(1), Netherlands. |
Javed, et al., “Plan for Integration”, Retrieved at <<http://taik.aalto.fi/fi/research/designium/publications/smart—store—s53—96—n.pdf>>, Retrieved Date: Dec. 27, 2011, pp. 53-96. |
Jojic, “A Framework for Garment Shopping Over the Internet”, to appear in May 1999 in Handbook of Electronic Commerce, edited by Mike Shaw, Springer Verlag, 22 pages. |
Kanade et al., “A Stereo Machine for Video-rate Dense Depth Mapping and Its New Applications”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun. 1996, pp. 196-202,The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. |
Kohler, “Special Topics of Gesture Recognition Applied in Intelligent Home Environments”, In Proceedings of the Gesture Workshop, Sep. 1997, pp. 285-296, Germany. |
Kohler, “Technical Details and Ergonomical Aspects of Gesture Recognition applied in Intelligent Home Environments”, Sep. 1997, Germany, 35 pages. |
Kohler, “Vision Based Remote Control in Intelligent Home Environments”, University of Erlangen-Nuremberg/ Germany, Nov. 1996, pp. 147-154, Germany. |
Livingston, “Vision-based Tracking with Dynamic Structured Light for Video See-through Augmented Reality”, 1998, University of North Carolina at Chapel Hill, North Carolina, USA,145 pages. |
Mhatre, Nachiket., “Kinect Delivers Augmented Reality Shopping”, Retrieved at <<http://www.techtree.com/India/News/Kinect—Delivers—Augmented—Reality—Shopping/551-115193-585.html>>, May 11, 2011, 3 Pages. |
Miyagawa et al., “CCD-Based Range Finding Sensor”, Oct. 1997, pp. 1648-1652, vol. 44 No. 10, IEEE Transactions on Electron Devices. |
Pavlovic et al., “Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review”, Jul. 1997, pp. 677-695, vol. 19, No. 7, IEEE Transactions on Pattern Analysis and Machine Intelligence. |
Qian et al., “A Gesture-Driven Multimodal Interactive Dance System”, Jun. 2004, pp. 1579-1582, IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan. |
Rosenhahn et al., “Automatic Human Model Generation”, Sep. 2005, pp. 41-48, University of Auckland (CITR), New Zealand. |
“Sears Transforms the Online Shopping Experience with Help From IBM and My Virtual Model”, Press Release, Mar. 9, 2009, http://www-01.ibm.com/software/success/cssdb.nsf/CS/CPOR-7PW4TU?OpenDocument&Site=default&cty=en—us, 3 pages. |
Shao et al., “An Open System Architecture for a Multimedia and Multimodal User Interface”, Aug. 24, 1998, Japanese Society for Rehabilitation of Persons with Disabilities (JSRPD), Japan, 8 pages. |
Sheridan et al., “Virtual Reality Check”, Technology Review, Oct. 1993, pp. 22-28, vol. 96, No. 7. |
“Simulation and Training”, 1994, Division Incorporated. |
Stevens, “Flights into Virtual Reality Treating Real World Disorders”, The Washington Post, Mar. 27, 1995, Science Psychology, 2 pages. |
Toyama, K. et al., “Probabilistic Tracking in a Metric Space”, Eighth International Conference on Computer Vision, Vancouver, Canada, vol. 2, Jul. 2001, 8 pages. |
“Virtual High Anxiety”, Tech Update, Aug. 1995, pp. 22. |
Wren et al., “Pfinder: Real-Time Tracking of the Human Body”, MIT Media Laboratory Perceptual Computing Section Technical Report No. 353, Jul. 1997, vol. 19, No. 7, pp. 780-785, IEEE Transactions on Pattern Analysis and Machine Intelligence, Caimbridge, MA. |
Zhao, “Dressed Human Modeling, Detection, and Parts Localization”, Jul. 26, 2001, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. |
State Intellectual Property Office of China, International Search Report of PCT/CN2012/077303, WIPO, Mar. 28, 2013, 3 pages. |
Anguelov, D. et al., “SCAPE: Shape Completion and Animation of People”, Proceedings of ACM SIGGRAPH 2005, pp. 408-416, Jul. 2005, 9 pages. |
Zhou, S. et al., “Parametric Reshaping of Human Bodies in Images”, Proceedings of ACM SIGGRAPH 2010, Article No. 126, Jul. 2010, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20130342527 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2012/077303 | Jun 2012 | US |
Child | 13585540 | US |