The present disclosure relates generally to the field of airborne radar systems. The present disclosure more specifically relates to the field of depiction of inferred weather threats on an aviation display.
In general, an airborne weather radar can readily detect precipitation (e.g., rain), which may be used as a surrogate for weather threats to an aircraft. However, some storms (e.g., typhoons) produce significant rainfall but little lightning, hail, turbulence, or other threats to the aircraft; whereas, other weather cells may produce little precipitation but severe turbulence. Similarly, lightning detectors can readily detect lightning strikes, but do not indicate areas of high electrical energy around a cell that are not active, but may be induced to strike by the passage of an aircraft.
Current systems which make inferences regarding weather threats are typically ground based and make broad predictions about weather. For example, National Weather Service severe thunderstorm watches or tornado watches indicate that conditions are favorable for a thunderstorm or tornado; however, these watches typically cover hundreds of square miles, which is generally not helpful in making decisions regarding flying through or around specific weather cells. Thus, there is a need to provide an improved system for indicating an inferred weather threat to an aircraft.
One embodiment relates to a method for indicating a weather threat to an aircraft, the method including inferring a weather threat to an aircraft and causing an image to be displayed on an aviation display in response to a determination by aircraft processing electronics that the inferred weather threat to the aircraft is greater than a measured weather threat to the aircraft.
Another embodiment relates to an apparatus for indicating an inferred weather threat to an aircraft, the apparatus including processing electronics configured to cause an image to be displayed on an aviation display in response to a determination that an inferred weather threat to the aircraft is greater than a measured weather threat to the aircraft.
Another embodiment relates to an aircraft weather radar system, the system including a processing circuit configured to determine a first weather threat using an algorithm using one of 1. a wind speed, a wind direction, and a size of a weather cell, 2. a temperature and a reflectivity, 3. a temperature and a reflectivity as a function of altitude, and 4. a change in an altitude of an echo top of a weather cell over time. The processing circuit is configured to cause an image to be displayed on an aviation display in response to the first weather threat to the aircraft being greater than a measured weather threat to the aircraft.
Referring generally to the FIGURES, systems and methods for indicating a weather threat to an aircraft are described, according to an exemplary embodiment. An airborne weather radar system is generally configured to project radar beams and to receive radar returns relating to the projected radar beams. The projected radar beams generally pass through air and reflect off of precipitation (e.g., rain, snow, etc.), other aircraft, and terrain (e.g., a mountain, a building). Using the reflected return data, processing electronics associated with the weather radar system can distinguish between types of precipitation and terrain. Weather radar systems are typically configured to display the precipitation as measured weather threats in green (light rain), yellow (moderate rain), and red (severe rain). While this “rain gauge” provides valuable information to the crew, it is not an accurate indicator of weather threat to the aircraft. For example, tropical cyclones or typhoons produce tremendous amounts of rain, but they are generally not threatening to an aircraft because they typically do not produce turbulence, hail, or lightning.
To provide a more accurate weather threat assessment to the crew, other threats to the aircraft may be inferred. For example, a core threat assessment (e.g., the probability of hail or lightning within a weather cell) may be inferred based on reflectivity as a function of altitude. A predictive overflight threat assessment may be inferred based on the growth rate and direction of a weather cell below the aircraft. Electrified regions associated with weather cells may not contain precipitation or be actively producing lightning; however, these threatening regions may be inferred based on reflectivity and the temperature at which the reflectivity is occurring. Weather threats (e.g., turbulence, lightning, hail, etc.) associated with the blow off (e.g. anvil) region downwind of a weather cell may be inferred based on wind speed, wind direction, and size of the weather cell. The systems and methods described below cause an image to be displayed on an aviation display in response to a determination that the inferred weather threat to the aircraft is greater than the measured weather threat to the aircraft.
Referring now to
Referring to
Radar system 300 generally works by sweeping a radar beam horizontally back and forth across the sky. Some radar systems will conduct a first horizontal sweep 104 directly in front of aircraft 101 and a second horizontal sweep 106 downward at some tilt angle 108 (e.g., 20 degrees down). Returns from different tilt angles can be electronically merged to form a composite image for display on an electronic display shown, for example, in
Referring to
Processing electronics 304 can also be configured to provide control signals or control logic to circuit 302. For example, depending on pilot or situational inputs, processing electronics 304 may be configured to cause circuit 302 to change behavior or radar beam patterns. In other words, processing electronics 304 may include the processing logic for operating weather radar system 300. It should be noted that processing electronics 304 may be integrated into radar system 300 or located remotely from radar system 300, for example, in aircraft control center 10.
Processing electronics 304 are further shown as connected to aircraft sensors 314 which may generally include any number of sensors configured to provide data to processing electronics 304. For example, sensors 314 could include temperature sensors, humidity sensors, infrared sensors, altitude sensors, a gyroscope, a global positioning system (GPS), or any other aircraft-mounted sensors that may be used to provide data to processing electronics 304. It should be appreciated that sensors 314 (or any other component shown connected to processing electronics 304) may be indirectly or directly connected to processing electronics 304. Processing electronics 304 are further shown as connected to avionics equipment 312. Avionics equipment 312 may be or include a flight management system, a navigation system, a backup navigation system, or another aircraft system configured to provide inputs to processing electronics 304.
Referring to
Memory 320 includes a memory buffer 324 for receiving radar return data. The radar return data may be stored in memory buffer 324 until buffer 324 is accessed for data. For example, a core threat module 328, overflight module 330, electrified region module 332, high altitude threat module 334, display control module 338, or another process that utilizes radar return data may access buffer 324. The radar return data stored in memory 320 may be stored according to a variety of schemes or formats. For example, the radar return data may be stored in an x,y or x,y,z format, a heading-up format, a north-up format, a latitude-longitude format, or any other suitable format for storing spatial-relative information.
Memory 320 further includes configuration data 326. Configuration data 326 includes data relating to weather radar system 300. For example, configuration data 326 may include beam pattern data which may be data that a beam control module 336 can interpret to determine how to command circuit 302 to sweep a radar beam. For example, configuration data 326 may include information regarding maximum and minimum azimuth angles of horizontal radar beam sweeps, azimuth angles at which to conduct vertical radar beam sweeps, timing information, speed of movement information, and the like. Configuration data 326 may also include data, such as threshold values, model information, look up tables, and the like used by modules 328-338 to identify and assess threats to aircraft 101.
Memory 320 is further shown to include a core threat module 328 which includes logic for using radar returns in memory buffer 324 to make one or more determinations or inferences relating to core threats to aircraft 101. For example, core threat module 328 may use temperature and radar return values at various altitudes to calculate a probability that lightning, hail, and/or strong vertical shearing exists within a weather cell. Core threat module 328 may be configured to compare the probability and/or severity of the core threat to a threshold value stored, for example, in core threat module 328 or configuration data 326. Core threat module 328 may further be configured to output a signal to display control module 338 indicative of the probability of the core threat, of the inferred threat level within the weather cell, or of the inferred threat level within the weather cell being greater than the measured threat due to radar returns from rainfall. The signal may further cause a change in a color on aviation display 20 associated to the threat level to aircraft 101.
Memory 320 is further shown to include an overflight module 330 which includes logic for using radar returns in memory buffer 324 to make one or more determinations or inferences based on weather below aircraft 101. For example, overflight module 330 may be configured to determine the growth rate of a weather cell and/or the change in altitude of an echo top of a weather cell over time. Overflight module 330 may further be configured to calculate a probability that a weather cell will grow into the flight path of aircraft 101. Overflight module 330 may be configured to output a signal to display control module 338 indicating the threat of the growing weather cell in relation to the flight path of aircraft 101. For example, the signal may indicate predicted intersection of the flight path of aircraft 101 and the weather cell, rate of growth of the weather cell, or predicted growth of the weather cell to within a threshold distance of the flightpath of aircraft 101. For example, the signal may cause an icon to be displayed on aviation display 20 in a location corresponding to the growing cell, wherein the size of the icon may represent the size, amount, or probability of threat to the aircraft. Overflight module 330 may be configured to inhibit display of weather far below, and thus not a threat to, aircraft 101.
Memory 320 is further shown to include a electrified region module 332 which includes logic for using radar returns in memory buffer 324 to make one or more determinations or inferences regarding potentially electrified regions around the weather cell. For example, electrified region module 332 may be configured to use temperature and reflectivity to determine whether a region around a weather cell is likely to produce lightning. Electrified region module 332 may be configured to determine a probability of aircraft 101 producing a lightning strike if the aircraft flies through a particular region based on the reflectivity around a convective cell near the freezing layer. Electrified region module 332 may further be configured to cause a pattern to be displayed on aviation display 20. For example, electrified region module 332 may be configured to output a signal to display control module 338 indicating the existence, location, and/or severity of risk of the electrified region.
Memory 320 is further shown to include a high altitude threat module 334 which includes logic for using radar returns in memory buffer 324 to make one or more determinations or inferences regarding threats related to a blow off or anvil region of a weather cell. For example, high altitude threat module 334 may be configured to use wind speed, wind direction, and size of a weather cell to predict the presence of an anvil region downwind of a weather cell that may contain lightning, hail, and/or turbulence. High altitude threat module 334 may be configured to cause a pattern to be displayed on an aviation display 20. For example, high altitude threat module 334 may be configured to output a signal to display control module 338 indicating the existence, location, and severity or risk of the anvil region.
Memory 320 is further shown to include a beam control module 336. Beam control module 336 may be an algorithm for commanding circuit 302 to sweep a radar beam. Beam control module 336 may be used, for example, to send one or more analog or digital control signals to circuit 302. The control signals may be, for example, an instruction to move the antenna mechanically, an instruction to conduct an electronic beam sweep in a certain way, an instruction to move the radar beam to the left by five degrees, etc. Beam control module 336 may be configured to control timing of the beam sweeps or movements relative to aircraft speed, flight path information, transmission or reception characteristics from weather radar system 300 or otherwise. Beam control module 336 may receive data from configuration data 326 for configuring the movement of the radar beam.
Memory 320 is further shown to include a display control module 338 which includes logic for displaying weather information on aviation display 20. For example, display control module 338 may be configured to display radar return information received from memory buffer 324 and to determine a gain level or other display setting for display of an inferred threat to aircraft 101 on a weather radar display. Display control module 338 may be configured to receive signals relating to threats to aircraft 101 from core threat module 328, overflight module 330, electrified region module 332, and high altitude threat module 334. Display control module 338 may further be configured to cause, in response to one or more signals received from threat modules 328-334 and threshold values from configuration data 326, a change in color of a portion of an image on aviation display 20, a pattern to be overlaid on an image on aviation display 20, and an icon to be shown on aviation display 20. Display control module 338 may be configured to cause a change in size, location, shape, or color of the colored regions, patterns, and/or icons in response to updated signals received from modules 328-336.
Processing electronics 304 may be configured to use none, some, or all of the threat modules 328-334 described above. For example, processing electronics 304 may have an automatic mode, in which weather radar antenna 310 is automatically controlled (e.g., direction, gain, etc.) and core threat module 328, overflight module 330, electrified region module 332, and high altitude threat module 334 are all processing information looking for inferred threats. Processing electronics 304 may have a manual mode, in which one or more of core threat module 328, overflight module 330, electrified region module 332, and high altitude threat module 334 may be disabled, for example, for diagnostic purposes.
Referring now to
As described above, processing electronics 304 uses avionics and radar return information to infer a core threat. For example, high reflectivity above the freezing layer indicates a high probability of strong vertical shearing in the middle of the weather cell, which in turn indicates a high probability of hail and/or lightning. According to one embodiment, core threat module 328 may provide a core threat probability to display control module 338, which would be configured to interpret the probability signal and adjust the color of the image displayed on aviation display 20 accordingly. According to another embodiment, core threat module 328 may compare the probability of the core threat to a threshold value and provide a threat level signal to display control module 338. Display control module 338 may then adjust the color shown on aviation display 20 to represent the threat to the aircraft. For example, referring to
In the example above, the image of an increased threat was displayed in response to a determination that the inferred weather threat was greater than the measured weather threat to the aircraft. It is contemplated, however, that an inference of a lower core threat may cause the color level to be reduced. For example, regions 506a indicate heavy rainfall, which is in and of itself not a threat to aircraft 101. If the core threat inference in region 506a is low, region 506b may be reduced to a moderate or yellow threat level. It is further contemplated that regions 508b of inferred core threat may be displayed as a pattern (e.g., striped pattern, speckled pattern, checkerboard pattern, etc.) of the increased threat level color in order to indicate to the crew that the increased threat level is an inference.
Referring
Processing electronics 304 may be configured to analyze the growth rate (e.g., the vertical height increase) of a weather cell below aircraft 101. The growth rate may be determined from changes in the altitude of the echo top of weather cell 610b over time. A probability that weather cell 610b will grow into the flight path of the aircraft may be calculated by overflight module 330 and compared to a threshold value. As shown in
According to another embodiment, the growth rate of a weather cell may not be great enough to grow into the flight path of aircraft 101 while cruising. However, as aircraft 101 begins to descend or turn, its flight path may intersect (or nearly intersect) the predicted location of lower developing activity. Accordingly, processing electronics 304 may consider not only the “straight line” flight path of aircraft 101, but the projected flight path of aircraft 101 according to its flight plan or auto-pilot settings. Processing electronics 304 may also cause icon 612 to be displayed for quickly developing severe cells outside of the flight path of aircraft 101, thereby alerting the crew to the presence of these developing cells before they appear as weather on aviation display 20. For example, a series of icons 612 may indicate to the crew that a larger weather system may be developing.
According to an exemplary embodiment, icon 612 is a yellow cautionary icon, which is displayed over black (e.g., no measured weather, weather far below, etc.) regions of the weather image on aviation display 20. Icon 612 may also be displayed on green (light rain, low threat) regions to indicate that the weather cell is rapidly growing and may worsen. According to other embodiments, icon 612 may be a pattern (e.g., striped pattern, speckled pattern, checkerboard pattern, etc.), wherein the pattern may be oriented to indicate a rate or direction of cell growth.
Referring to
Processing electronics 304 may be configured to determine or infer these electrified regions 704 based on reflectivity and the temperature at which the reflectivity is occurring. For example, electrified region module 332 may infer an electrified region based on a reflective region around a convective cell near the freezing layer. Further, electrified regions 704 typically occur at relatively low altitudes (e.g., 10,000 to 25,000 feet), so processing electronics may be configured to further infer electrified regions 704 based on altitude.
In response to an inference of an electrified field, processing electronics 304 may cause a pattern 706 (e.g., speckled pattern, striped pattern, checkerboard pattern, etc.), shown as a speckled pattern, to be overlaid on the image of measured weather on aviation display 20. The size and shape of the pattern 706 may change in response to a change in a level of inferred weather threat to aircraft 101. For example, the shape of the speckled pattern 706 may change with updated radar information.
According to an exemplary embodiment, pattern 706 is yellow to indicate an elevated cautionary threat level. Since electrified regions 704 are typically around the weather cell 702, the yellow pattern 706 is typically displayed over a black region (e.g., no measured weather, very light weather). Yellow pattern 706 may also be displayed over a green region (e.g., light rain, low measured threat) to indicated the elevated inferred threat level. Pattern 706 may be displayed over a yellow region (e.g., moderate rain, medium measured threat level) or a red region (e.g., heavy rain, high measured threat level); however, according to an exemplary embodiment, processing electronics 304 may inhibit pattern 706 from being displayed on yellow or red regions because colors already indicate an equal or higher level of threat. It is contemplated that a red pattern may be displayed over a yellow region in order to indicate an a high probability or intensity of an electrified region in a region of moderate rainfall.
Referring to
Processing electronics 304 may be configured to determine or infer associated threat regions 810a associated with anvil 808 based on wind speed, wind direction, and the size of the cell. For example, high altitude threat module 330 may infer an associated threat regions 810a on a downwind side of high altitude, high convectivity cell. In response to an inference of an associated threat region 810a, processing electronics 304 may cause a pattern 812 (e.g., speckled pattern, striped pattern, checkerboard pattern, etc.), shown as a speckled pattern, to be overlaid on the image of measured weather on aviation display 20. The size and shape of the pattern 812 may change in response to a change in a level of inferred weather threat to aircraft 101. For example, the shape of the speckled pattern 706 may change with updated radar information. According to one embodiment, the stripes of pattern 812 are oriented in the direction of the wind. According to another embodiment, shown in
As described above with respect to pattern 706, pattern 812 may be yellow to indicate an elevated cautionary threat level. According to an exemplary embodiment, pattern 812 may be displayed or black (e.g., no measured weather, very light weather) or green (e.g., light rain, low measured threat) regions to indicate the elevated inferred threat level; however, pattern 812 may not be displayed over a yellow (e.g., moderate rain, medium measured threat level) or a red (e.g., heavy rain, high measured threat level) region as these regions already indicate an equal or higher level of threat.
Referring to
Referring to
Various alternate embodiments of process 950 are contemplated. Process 950 may not include all of the steps shown. For example, process 950 may not include only one of the steps of inferring a weather threat to aircraft 101 based on a wind speed, a wind direction, and a size of a weather cell (step 954) or inferring a weather threat to aircraft 101 based on a temperature and reflectivity (step 955). According to another embodiment, process 950 may not include the step of changing the size or shape of the pattern in response to a change in a level of inferred weather threat to aircraft 101 (step 958). The steps of process 950 may be performed in various orders. For example, determining measured weather threats (step 952) and inferring weather threats (steps 954, 955) may be performed in any order or simultaneously.
The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a machine, the machine properly views the connection as a machine-readable medium. Thus, any such connection is properly termed a machine-readable medium. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Although the figures may show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various connection steps, processing steps, comparison steps, and decision steps.
The present application is a continuation of U.S. patent application Ser. No. 15/137,645, entitled “AVIATION DISPLAY DEPICTION OF WEATHER THREATS,” filed Apr. 25, 2016, which is a continuation of U.S. patent application Ser. No. 14/681,901, entitled “AVIATION DISPLAY DEPICTION OF WEATHER THREATS,” filed Apr. 8, 2015, which is a continuation of U.S. patent application Ser. No. 13/246,769, entitled “AVIATION DISPLAY DEPICTION OF WEATHER THREATS,” filed Sep. 27, 2011, each of which are incorporated by reference in their entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
650275 | Reeve | May 1900 | A |
3251057 | Buehler et al. | May 1966 | A |
3359557 | Fow et al. | Dec 1967 | A |
3404396 | Buchler et al. | Oct 1968 | A |
3465339 | Marner | Sep 1969 | A |
3491358 | Hicks et al. | Jan 1970 | A |
3508259 | Andrews | Apr 1970 | A |
3540829 | Collinson et al. | Nov 1970 | A |
3567915 | Altshuler et al. | Mar 1971 | A |
3646555 | Atlas | Feb 1972 | A |
3715748 | Hicks | Feb 1973 | A |
3764719 | Dell | Oct 1973 | A |
3781530 | Britland et al. | Dec 1973 | A |
3781878 | Kirkpatrick | Dec 1973 | A |
3803609 | Lewis et al. | Apr 1974 | A |
3885237 | Kirkpatrick | May 1975 | A |
3943511 | Evans et al. | Mar 1976 | A |
3964064 | Brandao et al. | Jun 1976 | A |
3968490 | Gostin | Jul 1976 | A |
4015257 | Fetter | Mar 1977 | A |
4043194 | Tanner | Aug 1977 | A |
4223309 | Payne | Sep 1980 | A |
4283715 | Choisnet | Aug 1981 | A |
4283725 | Chisholm | Aug 1981 | A |
4318100 | Shimizu et al. | Mar 1982 | A |
4346595 | Frosch et al. | Aug 1982 | A |
4430654 | Kupfer | Feb 1984 | A |
4435707 | Clark | Mar 1984 | A |
4459592 | Long | Jul 1984 | A |
4533915 | Lucchi et al. | Aug 1985 | A |
4555703 | Cantrell | Nov 1985 | A |
4600925 | Alitz et al. | Jul 1986 | A |
4613937 | Batty, Jr. | Sep 1986 | A |
4613938 | Hansen | Sep 1986 | A |
4649388 | Atlas | Mar 1987 | A |
4658255 | Nakamura et al. | Apr 1987 | A |
4684950 | Long | Aug 1987 | A |
4742353 | D'Addio et al. | May 1988 | A |
4761650 | Masuda et al. | Aug 1988 | A |
4835536 | Piesinger et al. | May 1989 | A |
RE33152 | Atlas | Jan 1990 | E |
4914444 | Pifer et al. | Apr 1990 | A |
4928131 | Onozawa | May 1990 | A |
4940987 | Frederick | Jul 1990 | A |
5036334 | Henderson et al. | Jul 1991 | A |
5049886 | Seitz et al. | Sep 1991 | A |
5057820 | Markson et al. | Oct 1991 | A |
5077558 | Kuntman | Dec 1991 | A |
5105191 | Keedy | Apr 1992 | A |
5159407 | Churnside et al. | Oct 1992 | A |
5164731 | Borden et al. | Nov 1992 | A |
5173704 | Buehler et al. | Dec 1992 | A |
5177487 | Taylor et al. | Jan 1993 | A |
5198819 | Susnjara | Mar 1993 | A |
5202690 | Frederick | Apr 1993 | A |
5208600 | Rubin | May 1993 | A |
5221924 | Wilson, Jr. | Jun 1993 | A |
5262773 | Gordon | Nov 1993 | A |
5291208 | Young | Mar 1994 | A |
5296865 | Lewis | Mar 1994 | A |
5311183 | Mathews | May 1994 | A |
5311184 | Kuntman | May 1994 | A |
5331330 | Susnjara | Jul 1994 | A |
5396220 | Markson et al. | Mar 1995 | A |
5402116 | Ashley | Mar 1995 | A |
5469168 | Anderson | Nov 1995 | A |
5479173 | Yoshioka et al. | Dec 1995 | A |
5485157 | Long | Jan 1996 | A |
5517193 | Allison et al. | May 1996 | A |
5521603 | Young | May 1996 | A |
5534868 | Gjessing et al. | Jul 1996 | A |
5568151 | Merritt | Oct 1996 | A |
5583972 | Miller | Dec 1996 | A |
5592171 | Jordan | Jan 1997 | A |
5602543 | Prata et al. | Feb 1997 | A |
5615118 | Frank | Mar 1997 | A |
5648782 | Albo et al. | Jul 1997 | A |
5654700 | Prata et al. | Aug 1997 | A |
5657009 | Gordon | Aug 1997 | A |
5686919 | Jordan et al. | Nov 1997 | A |
5726656 | Frankot | Mar 1998 | A |
5757322 | Ray et al. | May 1998 | A |
5771020 | Markson et al. | Jun 1998 | A |
5828332 | Frederick | Oct 1998 | A |
5838239 | Stern et al. | Nov 1998 | A |
5839080 | Muller et al. | Nov 1998 | A |
5907568 | Reitan, Jr. | May 1999 | A |
5920276 | Frederick | Jul 1999 | A |
5945926 | Ammar et al. | Aug 1999 | A |
5973635 | Albo | Oct 1999 | A |
6034760 | Rees | Mar 2000 | A |
6043756 | Bateman et al. | Mar 2000 | A |
6043757 | Patrick | Mar 2000 | A |
6081220 | Fujisaka et al. | Jun 2000 | A |
6138060 | Conner et al. | Oct 2000 | A |
6154151 | McElreath et al. | Nov 2000 | A |
6154169 | Kuntman | Nov 2000 | A |
6177873 | Cragun | Jan 2001 | B1 |
6184816 | Zheng et al. | Feb 2001 | B1 |
6201494 | Kronfeld | Mar 2001 | B1 |
6208284 | Woodell et al. | Mar 2001 | B1 |
6236351 | Conner et al. | May 2001 | B1 |
6240369 | Foust | May 2001 | B1 |
6246367 | Markson et al. | Jun 2001 | B1 |
6281832 | McElreath | Aug 2001 | B1 |
6289277 | Feyereisen et al. | Sep 2001 | B1 |
6297772 | Lewis | Oct 2001 | B1 |
6339747 | Daly et al. | Jan 2002 | B1 |
6340946 | Wolfson et al. | Jan 2002 | B1 |
6377202 | Kropfli et al. | Apr 2002 | B1 |
6377207 | Solheim et al. | Apr 2002 | B1 |
6381538 | Robinson et al. | Apr 2002 | B1 |
6388607 | Woodell | May 2002 | B1 |
6388608 | Woodell | May 2002 | B1 |
RE37725 | Yamada | Jun 2002 | E |
6405134 | Smith | Jun 2002 | B1 |
6424288 | Woodell | Jul 2002 | B1 |
6441773 | Kelly et al. | Aug 2002 | B1 |
6456226 | Zheng et al. | Sep 2002 | B1 |
6480142 | Rubin | Nov 2002 | B1 |
6496252 | Whiteley | Dec 2002 | B1 |
6501392 | Gremmert et al. | Dec 2002 | B2 |
6512476 | Woodell | Jan 2003 | B1 |
6518914 | Peterson et al. | Feb 2003 | B1 |
6549161 | Woodell | Apr 2003 | B1 |
6560538 | Schwinn et al. | May 2003 | B2 |
6563452 | Zheng et al. | May 2003 | B1 |
6577947 | Kronfeld et al. | Jun 2003 | B1 |
6590520 | Steele et al. | Jul 2003 | B1 |
6597305 | Szeto et al. | Jul 2003 | B2 |
6603425 | Woodell | Aug 2003 | B1 |
6606564 | Schwinn et al. | Aug 2003 | B2 |
6614382 | Cannaday et al. | Sep 2003 | B1 |
6650275 | Kelly | Nov 2003 | B1 |
6650972 | Robinson | Nov 2003 | B1 |
6667710 | Cornell et al. | Dec 2003 | B2 |
6670908 | Wilson | Dec 2003 | B2 |
6677886 | Lok | Jan 2004 | B1 |
6683609 | Baron et al. | Jan 2004 | B1 |
6690317 | Szeto et al. | Feb 2004 | B2 |
6703945 | Kuntman et al. | Mar 2004 | B2 |
6720906 | Szeto et al. | Apr 2004 | B2 |
6738010 | Steele et al. | May 2004 | B2 |
6741203 | Woodell | May 2004 | B1 |
6744382 | Lapis et al. | Jun 2004 | B1 |
6771207 | Lang | Aug 2004 | B1 |
6788043 | Murphy et al. | Sep 2004 | B2 |
6791311 | Murphy et al. | Sep 2004 | B2 |
6828922 | Gremmert et al. | Dec 2004 | B1 |
6828923 | Anderson | Dec 2004 | B2 |
6839018 | Szeto et al. | Jan 2005 | B2 |
6850185 | Woodell | Feb 2005 | B1 |
6856908 | Devarasetty et al. | Feb 2005 | B2 |
6879280 | Bull | Apr 2005 | B1 |
6882302 | Woodell | Apr 2005 | B1 |
6917860 | Robinson et al. | Jul 2005 | B1 |
6977608 | Anderson et al. | Dec 2005 | B1 |
7030805 | Ormesher et al. | Apr 2006 | B2 |
7042387 | Ridenour | May 2006 | B2 |
7082382 | Rose et al. | Jul 2006 | B1 |
7109912 | Paramore et al. | Sep 2006 | B1 |
7109913 | Paramore | Sep 2006 | B1 |
7116266 | Vesel et al. | Oct 2006 | B1 |
7129885 | Woodell | Oct 2006 | B1 |
7132974 | Christianson | Nov 2006 | B1 |
7139664 | Kelly et al. | Nov 2006 | B2 |
7145503 | Abramovich et al. | Dec 2006 | B2 |
7161525 | Finley | Jan 2007 | B1 |
7200491 | Rose et al. | Apr 2007 | B1 |
7205928 | Sweet | Apr 2007 | B1 |
7242343 | Woodell | Jul 2007 | B1 |
7259714 | Cataldo | Aug 2007 | B1 |
7292178 | Woodell | Nov 2007 | B1 |
7307576 | Koenigs | Dec 2007 | B1 |
7307577 | Kronfeld et al. | Dec 2007 | B1 |
7307583 | Woodell | Dec 2007 | B1 |
7307586 | Peshlov et al. | Dec 2007 | B2 |
7307756 | Walmsley | Dec 2007 | B2 |
7352317 | Finley et al. | Apr 2008 | B1 |
7352929 | Hagen et al. | Apr 2008 | B2 |
7365674 | Tillotson et al. | Apr 2008 | B2 |
7372394 | Woodell et al. | May 2008 | B1 |
7383131 | Wey et al. | Jun 2008 | B1 |
7417578 | Woodell et al. | Aug 2008 | B1 |
7417579 | Woodell | Aug 2008 | B1 |
7427943 | Kronfeld et al. | Sep 2008 | B1 |
7436361 | Paulsen et al. | Oct 2008 | B1 |
7471995 | Robinson | Dec 2008 | B1 |
7486219 | Woodell | Feb 2009 | B1 |
7486220 | Kronfeld | Feb 2009 | B1 |
7492304 | Woodell et al. | Feb 2009 | B1 |
7492305 | Woodell | Feb 2009 | B1 |
7515087 | Woodell | Apr 2009 | B1 |
7515088 | Woodell | Apr 2009 | B1 |
7528613 | Thompson et al. | May 2009 | B1 |
7541971 | Woodell et al. | Jun 2009 | B1 |
7557735 | Woodell | Jul 2009 | B1 |
7576680 | Woodell | Aug 2009 | B1 |
7581441 | Barny et al. | Sep 2009 | B2 |
7598901 | Tillotson et al. | Oct 2009 | B2 |
7598902 | Woodell et al. | Oct 2009 | B1 |
7633428 | McCusker et al. | Dec 2009 | B1 |
7633431 | Wey et al. | Dec 2009 | B1 |
7664601 | Daly, Jr. | Feb 2010 | B2 |
7696920 | Finley et al. | Apr 2010 | B1 |
7696921 | Finley | Apr 2010 | B1 |
7714767 | Kronfeld et al. | May 2010 | B1 |
7728758 | Varadarajan et al. | Jun 2010 | B2 |
7733264 | Woodell | Jun 2010 | B1 |
7859448 | Woodell et al. | Dec 2010 | B1 |
7868811 | Woodell | Jan 2011 | B1 |
7917255 | Finley | Mar 2011 | B1 |
7932853 | Woodell et al. | Apr 2011 | B1 |
7973698 | Woodell et al. | Jul 2011 | B1 |
7982658 | Kauffman | Jul 2011 | B2 |
8022859 | Bunch et al. | Sep 2011 | B2 |
8054214 | Bunch | Nov 2011 | B2 |
8072368 | Woodell | Dec 2011 | B1 |
8081106 | Yannone | Dec 2011 | B2 |
8089391 | Woodell | Jan 2012 | B1 |
8098188 | Costes et al. | Jan 2012 | B2 |
8098189 | Woodell et al. | Jan 2012 | B1 |
8111186 | Bunch | Feb 2012 | B2 |
8159369 | Koenigs | Apr 2012 | B1 |
8217828 | Kirk | Jul 2012 | B2 |
8228227 | Bunch | Jul 2012 | B2 |
8314730 | Musiak et al. | Nov 2012 | B1 |
8332084 | Bailey et al. | Dec 2012 | B1 |
8601864 | Eilts et al. | Dec 2013 | B1 |
8902100 | Woodell et al. | Dec 2014 | B1 |
9019146 | Finley et al. | Apr 2015 | B1 |
9134418 | Kronfeld et al. | Sep 2015 | B1 |
20020039072 | Gremmert et al. | Apr 2002 | A1 |
20020126039 | Dalton et al. | Sep 2002 | A1 |
20030001770 | Cornell et al. | Jan 2003 | A1 |
20030025627 | Wilson et al. | Feb 2003 | A1 |
20030117311 | Funai | Jun 2003 | A1 |
20030193411 | Price | Oct 2003 | A1 |
20040183695 | Ruokangas et al. | Sep 2004 | A1 |
20040239550 | Daly, Jr. | Dec 2004 | A1 |
20050049789 | Kelly et al. | Mar 2005 | A1 |
20050174350 | Ridenour et al. | Aug 2005 | A1 |
20060036366 | Kelly et al. | Feb 2006 | A1 |
20070005249 | Dupree et al. | Jan 2007 | A1 |
20070152867 | Randall | Jul 2007 | A1 |
20080158049 | Southard et al. | Jul 2008 | A1 |
20090177343 | Bunch et al. | Jul 2009 | A1 |
20090219197 | Bunch | Sep 2009 | A1 |
20100019938 | Bunch | Jan 2010 | A1 |
20100042275 | Kirk | Feb 2010 | A1 |
20100110431 | Ray et al. | May 2010 | A1 |
20100194628 | Christianson et al. | Aug 2010 | A1 |
20100201565 | Khatwa | Aug 2010 | A1 |
20100245164 | Kauffman | Sep 2010 | A1 |
20100245165 | Kauffman et al. | Sep 2010 | A1 |
20100302094 | Bunch et al. | Dec 2010 | A1 |
20110074624 | Bunch | Mar 2011 | A1 |
20110148692 | Christianson | Jun 2011 | A1 |
20110148694 | Bunch | Jun 2011 | A1 |
20110187588 | Khatwa et al. | Aug 2011 | A1 |
20120029786 | Calandra et al. | Feb 2012 | A1 |
20120133551 | Pujol et al. | May 2012 | A1 |
20120139778 | Bunch et al. | Jun 2012 | A1 |
20130226452 | Watts | Aug 2013 | A1 |
20130234884 | Bunch et al. | Sep 2013 | A1 |
20140039734 | Ramaiah et al. | Feb 2014 | A1 |
20140176362 | Sneed | Jun 2014 | A1 |
20140362088 | Veillette et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
1 329 738 | Jul 2003 | EP |
2658617 | Aug 1991 | FR |
WO-9807047 | Feb 1998 | WO |
WO-9822834 | May 1998 | WO |
WO-03005060 | Jan 2003 | WO |
WO-2009137158 | Nov 2009 | WO |
Entry |
---|
U.S. Appl. No. 13/246,769, filed Sep. 27, 2011, Rockwell Collins. |
U.S. Appl. No. 13/717,052, filed Dec. 17, 2012, Daniel L. Woodell et al. |
U.S. Appl. No. 13/717,052, filed Dec. 17, 2012, Woodell et al. |
U.S. Appl. No. 13/837,538, filed Mar. 15, 2013, Kronfeld et al. |
U.S. Appl. No. 13/841,893, filed Mar. 15, 2013, Rockwell Collins, Inc. |
U.S. Appl. No. 13/919,406, filed Jun. 17, 2013, Rockwell Collins, Inc. |
U.S. Appl. No. 14/086,844, filed Nov. 21, 2013, Rockwell Collins, Inc. |
U.S. Appl. No. 14/162,035, filed Jan. 23, 2014, Kevin M. Kronfeld et al. |
U.S. Appl. No. 14/206,239, filed Mar. 12, 2014, Rockwell Collins. |
U.S. Appl. No. 14/206,651, filed Mar. 12, 2014, Rockwell Collins, Inc. |
U.S. Appl. No. 14/207,034, filed Mar. 12, 2014, Rockwell Collins, Inc. |
U.S. Appl. No. 14/323,766, filed Jul. 3, 2014, Weichbrod et al. |
U.S. Appl. No. 14/465,730, filed Aug. 21, 2014, Breiholz et al. |
U.S. Appl. No. 14/465,753, filed Aug. 21, 2014, Arlen E. Breiholz et al. |
U.S. Appl. No. 14/608,071, filed Jan. 28, 2015, Breiholz et al. |
3-D Weather Hazard and Avoidance System, Honeywell InteVue Brochure dated Nov. 2008, 4 pages. |
Advisory Action for U.S. Appl. No. 12/075,103, dated Feb. 13, 2013, 3 pages. |
Advisory Action for U.S. Appl. No. 12/075,103, dated Nov. 8, 2010, 3 pages. |
Advisory Action for U.S. Appl. No. 12/075,103, dated Oct. 15, 2010, 3 pages. |
Amburn et al., 1997, VIL Density as a Hail Indicator, Wea. Forecasting, 12, 473-478. |
Boudevillain et al., 2003, Assessment of Vertically Integrated Liquid (VIL) Water Content Radar Measurement, J. Atmos. Oceanic Technol., 20, 807-819. |
Bovith et al., Detecting Weather Radar Clutter by Information Fusion with Satellite Images and Numerical Weather Prediction Model Output; Jul. 31-Aug. 4, 2006, 4 pages. |
Burnham et al., Thunderstorm Turbulence and Its Relationship to Weather Radar Echoes, J. Aircraft, Sep.-Oct. 1969, 8 pages. |
Corridor Integrated Weather System (CIWS), www.II.mit.edu/mission/aviation/faawxsystems/ciws.html, received on Aug. 19, 2009, 3 pages. |
Decision on Appeal for Inter Parties Reexamination Control No. 95/001,860, dated Oct. 17, 2014, 17 pages. |
Doviak et al., Doppler Radar and Weather Observations, 1984, 298 pages. |
Dupree et al.,FAA Tactical Weather Forecasting in the United States National Airspace, Proceedings from the World Weather Research Symposium on Nowcasting and Very Short Term Forecasts, Toulouse, France, 2005, 29 pages. |
Final Office Action on U.S. Appl. No. 12/892,663 dated Mar. 7, 2013, 13 pages. |
Final Office Action on U.S. Appl. No. 13/238,606 dated Apr. 1, 2014, 11 pages. |
Final Office Action on U.S. Appl. No. 13/238,606 dated Jan. 22, 2015, 6 pages. |
Final Office Action on U.S. Appl. No. 13/246,769 dated Sep. 16, 2014, 18 pages. |
Final Office Action on U.S. Appl. No. 13/717,052, dated Nov. 13, 2015, 10 pages. |
Final Office Action on U.S. Appl. No. 14/206,239, dated Oct. 13, 2016, 17 pages. |
Final Office Action on U.S. Appl. No. 14/206,651, dated Dec. 8, 2016, 14 pages. |
Final Office Action on U.S. Appl. No. 14/207,034, dated Oct. 13, 2016, 15 pages. |
Goodman et al., LISDAD Lightning Observations during the Feb. 22-23, 1998 Central Florida Tornado Outbreak, http:www.srh.noaa.gov/topics/attach/html/ssd98-37.htm, Jun. 1, 1998, 5 pages. |
Greene et al., Vertically Integrated Liquid Water—A New Analysis Tool, Monthly Weather Review, Jul. 1972, 5 pages. |
Hodanish, Integration of Lightning Detection Systems in a Modernized National Weather Service Office, http://www.srh.noaa.gov/mlb/hoepub.html, retrieved on Aug. 6, 2007, 5 pages. |
Honeywell, RDR-4B Forward Looking Windshear Detection/Weather Radar System User's Manual with Radar Operation Guidelines, Jul. 2003, 106 pages. |
Keith, Transport Category Airplane Electronic Display Systems, Jul. 16, 1987, 34 pages. |
Klingle-Wilson et al., Description of Corridor Integrated Weather System (CIWS) Weather Products, Aug. 1, 2005, 120 pages. |
Kuntman et al, Turbulence Detection and Avoidance System, Flight Safety Foundation 53rd International Air Safety Seminar (IASS), Oct. 29, 2000. |
Kuntman, Airborne System to Address Leading Cause of Injuries in Non-Fatal Airline Accidents, ICAO Journal, Mar. 2000. |
Kuntman, Satellite Imagery: Predicting Aviation Weather Hazards, ICAO Journal, Mar. 2000, 4 pps. |
Lahiff, 2005, Vertically Integrated Liquid Density and Its Associated Hail Size Range Across the Burlington, Vermont County Warning Area, Eastern Regional Technical Attachment, No. 05-01, 20 pages. |
Liu, Chuntao et al., Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics, Journal of Geophysical Research, vol. 177, D06212, doi:10.1029/2011JDo17123,2012, American Geophysical Union, Mar. 27, 2012, 19 pages. |
Meteorological/KSC/L71557/Lighting Detection and Ranging (LDAR), Jan. 2002, 12 pages. |
Nathanson, Fred E., “Radar and Its Composite Environment,” Radar Design Principles, Signal Processing and the Environment, 1969, 5 pages, McGraw-Hill Book Company, New York et al. |
Non-Final Office Action on U.S. Appl. No. 13/238,606 dated May 27, 2015, 14 pages. |
Non-Final Office Action on U.S. Appl. No. 14/452,235 dated Apr. 23, 2015, 9 pages. |
Non-Final Office Action on U.S. Appl. No. 14/681,901 dated Jun. 17, 2015, 21 pages. |
Non-Final Office Action on U.S. Appl. No. 12/892,663 dated May 29, 2013, 14 pages. |
Non-Final Office Action on U.S. Appl. No. 13/238,606 dated Sep. 23, 2013, 15 pages. |
Non-Final Office Action on U.S. Appl. No. 13/717,052 dated Feb. 11, 2015, 15 pages. |
Non-Final Office Action on U.S. Appl. No. 13/717,052 dated Sep. 9, 2014, 8 pages. |
Non-Final Office Action on U.S. Appl. No. 13/841,893 dated Jun. 22, 2015, 27 pages. |
Non-Final Office Action on U.S. Appl. No. 13/913,100 dated May 4, 2015, 25 pages. |
Non-Final Office Action on U.S. Appl. No. 13/919,406 dated Jul. 14, 2015, 23 pages. |
Non-Final Office Action on U.S. Appl. No. 14/162,035 dated Jul. 11, 2016, 10 pages. |
Non-Final Office Action on U.S. Appl. No. 14/162,035, dated Feb. 4, 2016, 9 pages. |
Non-Final Office Action on U.S. Appl. No. 14/206,239, dated Feb. 24, 2017, 14 pages. |
Non-Final Office Action on U.S. Appl. No. 14/206,651 dated Jun. 23, 2016, 12 pages. |
Non-Final Office Action on U.S. Appl. No. 14/207,034 dated Jun. 23, 2016, 14 pages. |
Non-Final Office Action on U.S. Appl. No. 14/465,753, dated Apr. 4, 2016, 12 pages. |
Non-Final Office Action on U.S. Appl. No. 14/977,084, dated Dec. 1, 2016, 14 pages. |
Non-Final Office Action on U.S. Appl. No. 15/137,645 dated Aug. 8, 2016, 6 pages. |
Non-Final Office Action on U.S. Appl. No. 14/086,844, dated Nov. 10, 2015, 17 pages. |
Notice of Allowance for U.S. Appl. No. 10/631,253, dated Jul. 28, 2005, 7 pages. |
Notice of Allowance for U.S. Appl. No. 11/256,845, dated May 27, 2009, 7 pages. |
Notice of Allowance for U.S. Appl. No. 11/370,085, dated Dec. 30, 2008, 6 pages. |
Notice of Allowance for U.S. Appl. No. 11/402,434, dated Nov. 4, 2008, 6 pages. |
Notice of Allowance for U.S. Appl. No. 12/474,102, dated Jan. 20, 2012, 6 pages. |
Notice of Allowance on U.S. Appl. No. 12/075,103 dated Aug. 4, 2014, 10 pages. |
Notice of Allowance on U.S. Appl. No. 13/246,769 dated Jan. 8, 2015, 10 pages. |
Notice of Allowance on U.S. Appl. No. 13/707,438 dated Feb. 25, 2015, 11 pages. |
Notice of Allowance on U.S. Appl. No. 14/086,844, dated Jun. 22, 2016, 8 pages. |
Notice of Allowance on U.S. Appl. No. 14/206,651, dated Mar. 3, 2017, 8 pages. |
Notice of Allowance on U.S. Appl. No. 14/465,753, dated Aug. 29, 2016, 8 pages. |
Notice of Allowance on U.S. Appl. No. 15/137,645, dated Dec. 14, 2016, 8 pages. |
Notice of Allowance on U.S. Appl. No. 15/287,673, dated Nov. 18, 2016, 8 pages. |
Notice of Allowance on U.S. Appl. No. 14/681,901, dated Dec. 23, 2015, 8 pages. |
Office Action for U.S. Appl. No. 11/256,845, dated Aug. 21, 2007, 4 pages. |
Office Action for U.S. Appl. No. 10/631,253, dated Jan. 14, 2004, 5 pages. |
Office Action for U.S. Appl. No. 10/631,253, dated Jun. 30, 2004, 4 pages. |
Office Action for U.S. Appl. No. 11/256,845, dated Dec. 5, 2006, 5 pages. |
Office Action for U.S. Appl. No. 11/256,845, dated Jul. 28, 2008, 5 pages. |
Office Action for U.S. Appl. No. 11/256,845, dated Jun. 22, 2006, 5 pages. |
Office Action for U.S. Appl. No. 11/370,085, dated Aug. 15, 2007, 10 pages. |
Office Action for U.S. Appl. No. 11/370,085, dated Dec. 4, 2007, 13 pages. |
Office Action for U.S. Appl. No. 11/370,085, dated Oct. 9, 2008, 5 pages. |
Office Action for U.S. Appl. No. 11/402,434, dated Jul. 17, 2008, 5 pages. |
Office Action for U.S. Appl. No. 11/402,434, dated Mar. 29, 2007, 8 pages. |
Office Action for U.S. Appl. No. 11/402,434, dated Oct. 26, 2006, 7 pages. |
Office Action for U.S. Appl. No. 11/402,434, dated Sep. 20, 2007, 7 pages. |
Office Action for U.S. Appl. No. 12/075,103, dated Feb. 26, 2010, 11 pages. |
Office Action for U.S. Appl. No. 12/075,103, dated Jul. 29, 2010, 7 pages. |
Office Action for U.S. Appl. No. 12/075,103, dated Jun. 20, 2012, 5 pages. |
Office Action for U.S. Appl. No. 12/075,103, dated Nov. 29, 2012, 6 pages. |
Office Action for U.S. Appl. No. 12/474,102, dated Sep. 7, 2011, 8 pages. |
Office Action for U.S. Appl. No. 12/892,663, dated Oct. 22, 2012, 12 pages. |
Office Action for U.S. Appl. No. 13/717,052, dated Aug. 22, 2013, 15 pages. |
Office Action on U.S. Appl. No. 12/075,103 dated Apr. 9, 2014, 5 pages. |
Office Action on U.S. Appl. No. 12/075,103 dated Jul. 31, 2013, 8 pages. |
Office Action on U.S. Appl. No. 13/246,769 dated Apr. 21, 2014, 18 pages. |
Office Action on U.S. Appl. No. 13/717,052 dated Dec. 23, 2013, 7 pages. |
Pessi et al., On the Relationship Between Lightning and Convective Rainfall Over the Central Pacific Ocean, date unknown, 9 pages. |
Robinson et al., En Route Weather Depiction Benefits of the Nexrad Vertically Integrated Liquid Water Product Utilized by the Corridor Integrated Weather System, 10th Conference on Aviation, Range, and Aerospace Meteorology (ARAM), 2002, 4 pages. |
Stormscope Lightning Detection Systems, L3 Avionics Systems, retrieved on Jul. 11, 2011, 6 pages. |
TOA Technology, printed from website: http://www.toasystems.com/technology.html on Dec. 29, 2010, 2 pages. |
Triangulation, from Wkipedia, printed from website: http://en.wikipedia.org/wiki/Triangulation on Dec. 29, 2010, 6 pages. |
U.S. Office Action on U.S. Appl. No. 13/717,052 dated Mar. 27, 2014, 6 pages. |
Waldvogel et al., The Kinetic Energy of Hailfalls. Part I: Hailstone Spectra, Journal of Applied Meteorology, Apr. 1978, 8 pages. |
Wilson et al., The Complementary Use of Titan-Derived Radar and Total Lightning Thunderstorm Cells, paper presented on Oct. 16, 2005, 10 pages. |
Zipser et al., The Vertical Profile of Radar Reflectivity and Convective Cells: A Strong Indicator of Storm Intensity and Lightning Probability? America Meteorological Society, 1994, 9 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 15137645 | Apr 2016 | US |
Child | 15487234 | US | |
Parent | 14681901 | Apr 2015 | US |
Child | 15137645 | US | |
Parent | 13246769 | Sep 2011 | US |
Child | 14681901 | US |