The present subject matter relates generally to aviation systems.
An aerial vehicle can include one or more engines for propulsion of the aerial vehicle. The one or more engines can include and/or can be in communication with one or more electronic engine controllers (EECs). The one or more EECs can record data related to the one or more engines. If the data resides on the EECs, then it can be difficult for a ground system to use the data. Automated engine data transfer replaces manual data retrieval and increases the availability of data at the ground system.
Aspects and advantages of embodiments of the present disclosure will be set forth in part in the following description, or may be learned from the description, or may be learned through practice of the embodiments.
One example aspect of the present disclosure is directed to a wireless communication unit. The wireless communication unit includes one or more memory devices. The wireless communication unit includes one or more processors. The one or more processors are configured to receive a message via an aviation messaging protocol. The one or more processors are configured to encapsulate the message in a packet, wherein the packet comprises a User Datagram Protocol format. The one or more processors are configured to transmit the packet via an Ethernet connection.
Other example aspects of the present disclosure are directed to systems, methods, aircrafts, engines, controllers, devices, non-transitory computer-readable media for recording and communicating engine data. Variations and modifications can be made to these example aspects of the present disclosure.
These and other features, aspects and advantages of various embodiments will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and, together with the description, serve to explain the related principles.
Detailed discussion of embodiments directed to one of ordinary skill in the art are set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the embodiments, not limitation of the embodiments. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present disclosure covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. The use of the term “about” in conjunction with a numerical value refers to within 25% of the stated amount.
Example aspects of the present disclosure are directed to methods and systems for recording and communicating engine data on an aerial vehicle. The aerial vehicle can include one or more engines for operations, such as propulsion of the aerial vehicle. The one or more engines can include and/or be in communication with one or more electronic engine controllers (EECs).
According to example embodiments of the present disclosure, the one or more engines and/or the one or more EECs can include and/or can be in communication with one or more wireless communication units (WCUs). During flight or other operation of the aerial vehicle, the one or more EECs can record data related to the one or more engines and can communicate (e.g., transmit, send, push, etc.) the data to the one or more WCUs, where the WCUs can store the data in a memory. Each EEC can communicate the data to its own associated WCU. In addition and/or in the alternative, each EEC can communicate data to a single WCU located on the aerial vehicle. Upon the occurrence of a particular trigger condition (e.g., when the aerial vehicle lands), the one or more WCUs can communicate the data to a ground system over a wireless network, such as a cellular network.
In some embodiments, the WCU can be adaptable for communication with the EEC via a Telecommunications Industry Association (TIA) TIA-485 interface. The WCU can be adaptable for communication with the ground system via an antenna. The WCU can transmit information received from the EEC to the ground system. The ground system can use the information received from the WCU to determine a status (e.g., state, health, etc.) of an engine associated with the WCU. In addition, the WCU can be adaptable for communication with a portable maintenance access terminal (PMAT) for maintenance.
According to example embodiments of the present disclosure, the WCU can include an Engine Control Expansion Bus (ECEB) field-programmable gate array (FPGA) design. The WCU include one or more FPGAs. The WCU can receive one or more messages via an aviation messaging protocol over, for instance, a TIA-485 interface. The WCU can distribute the one or more messages among the one or more FPGAs. The one or more FPGAs can encapsulate the one or more messages into one or more packets, wherein the one or more packets have a User Datagram Protocol (UDP) format. The WCU can multiplex the one or more packets into a stream. The WCU can transmit the stream via an Ethernet connection.
One example aspect of the present disclosure is directed to a wireless communication unit. The wireless communication unit includes one or more memory devices. The wireless communication unit includes one or more processors. The one or more processors are configured to receive a message via an aviation messaging protocol. The one or more processors are configured to encapsulate the message in a packet, wherein the packet comprises a User Datagram Protocol format. The one or more processors are configured to transmit the packet via an Ethernet connection.
In an embodiment, the aviation messaging protocol is a Telecommunications Industry Association TIA-485 interface. In an embodiment, the one or more processors are configured to receive a second message via the aviation messaging protocol. In an embodiment, the one or more processors are configured to encapsulate the second message in a second packet, wherein the second packet comprises the User Datagram Protocol format. In an embodiment, the one or more processors are configured to multiplex the first message and the second message into a stream. In an embodiment, transmitting the packet via an Ethernet connection further includes transmitting the stream comprising the first and second messages via the Ethernet connection. In an embodiment, the one or more processors include a field-programmable gate array. In an embodiment, the wireless communication unit is associated with an engine. In an embodiment, the wireless communication unit is associated with an aerial vehicle.
Another example aspect of the present disclosure is directed to a method for encapsulating data. The method includes receiving, by one or more computing devices, a message via an aviation messaging protocol. The method includes encapsulating, by the one or more computing devices, the message in a packet, wherein the packet comprises a User Datagram Protocol (UDP) format. The method includes transmitting, by the one or more computing devices, the packet via an Ethernet connection.
In an embodiment, the aviation messaging protocol is a Telecommunications Industry Association TIA-485 interface. In an embodiment, the method includes receiving, by the one or more computing devices, a second message via the aviation messaging protocol. In an embodiment, the method includes encapsulating, by the one or more computing devices, the second message in a second packet, wherein the second packet comprises the User Datagram Protocol format. In an embodiment, the method includes multiplexing, by the one or more computing devices, the first message and the second message into a stream. In an embodiment, transmitting, by the one or more computing devices, the packet via an Ethernet connection further includes transmitting, by the one or more computing devices, the stream including the first and second messages via the Ethernet connection. In an embodiment, the one or more computing devices include a field-programmable gate array. In an embodiment, a wireless communication unit includes the one or more computing devices. In an embodiment, the wireless communication unit is associated with an engine. In an embodiment, the wireless communication unit is associated with an aerial vehicle.
Another example aspect of the present disclosure is directed to a system for encapsulating data. The system includes a wireless communication unit (WCU). The WCU includes one or more memory devices. The WCU includes one or more processors. The one or more processors are configured to receive a message via an aviation messaging protocol. The one or more processors are configured to encapsulate the message in a packet, wherein the packet comprises a User Datagram Protocol (UDP) format. The one or more processors are configured to transmit the packet via an Ethernet connection.
In an embodiment, the aviation messaging protocol is a Telecommunications Industry Association TIA-485 interface. In an embodiment, the one or more processors are configured to receive a second message via the aviation messaging protocol. In an embodiment, the one or more processors are configured to encapsulate the second message in a second packet, wherein the second packet comprises the User Datagram Protocol format. In an embodiment, the one or more processors are configured to multiplex the first message and the second message into a stream. In an embodiment, transmitting the packet via an Ethernet connection further includes transmitting the stream comprising the first and second messages via the Ethernet connection. In an embodiment, the one or more processors include a field-programmable gate array. In an embodiment, the wireless communication unit is associated with an engine. In an embodiment, the wireless communication unit is associated with an aerial vehicle.
Another example aspect of the present disclosure is directed to an aerial vehicle. The aerial vehicle includes a wireless communication unit. The wireless communication unit includes one or more memory devices. The wireless communication unit includes one or more processors. The one or more processors are configured to receive a message via an aviation messaging protocol. The one or more processors are configured to encapsulate the message in a packet, wherein the packet comprises a User Datagram Protocol format. The one or more processors are configured to transmit the packet via an Ethernet connection.
In an embodiment, the aviation messaging protocol is a Telecommunications Industry Association TIA-485 interface. In an embodiment, the one or more processors are configured to receive a second message via the aviation messaging protocol. In an embodiment, the one or more processors are configured to encapsulate the second message in a second packet, wherein the second packet comprises the User Datagram Protocol format. In an embodiment, the one or more processors are configured to multiplex the first message and the second message into a stream. In an embodiment, transmitting the packet via an Ethernet connection further includes transmitting the stream comprising the first and second messages via the Ethernet connection. In an embodiment, the one or more processors include a field-programmable gate array. In an embodiment, the wireless communication unit is associated with an engine. In an embodiment, the wireless communication unit is associated with an aerial vehicle.
The one or more engines 102 can include and/or be in communication with one or more electronic engine controllers (EECs) 104. The one or more engines 102 and/or the one or more EECs 104 can include and/or be in communication with one or more wireless communication units (WCUs) 106. The one or more EECs 104 can record data related to the one or more engines 102 and communicate (e.g., transmit, send, push, etc.) the data to the one or more WCUs 106. The one or more WCUs 106 can communicate the data to a ground system via, for instance, an antenna positioned and configured within the nacelle 50.
As shown in
The exemplary core turbine engine 16 depicted generally includes a substantially tubular outer casing 18 that defines an annular inlet 20. The outer casing 18 encases and the core turbine engine 16 includes, in serial flow relationship, a compressor section including a booster or low pressure (LP) compressor 22 and a high pressure (HP) compressor 24; a combustion section 26; a turbine section including a high pressure (HP) turbine 28 and a low pressure (LP) turbine 30; and a jet exhaust nozzle section 32. A high pressure (HP) shaft or spool 34 drivingly connects the HP turbine 28 to the HP compressor 24. A low pressure (LP) shaft or spool 36 drivingly connects the LP turbine 30 to the LP compressor 22. Accordingly, the LP shaft 36 and HP shaft 34 are each rotary components, rotating about the axial direction A during operation of the turbofan engine 102.
In order to support such rotary components, the turbofan engine includes a plurality of air bearings 80 attached to various structural components within the turbofan engine 102. Specifically, for the embodiment depicted the bearings 80 facilitate rotation of, e.g., the LP shaft 36 and HP shaft 34 and dampen vibrational energy imparted to bearings 80 during operation of the turbofan engine 102. Although the bearings 80 are described and illustrated as being located generally at forward and aft ends of the respective LP shaft 36 and HP shaft 34, the bearings 80 may additionally, or alternatively, be located at any desired location along the LP shaft 36 and HP shaft 34 including, but not limited to, central or mid-span regions of the shafts 34, 36, or other locations along shafts 34, 36 where the use of conventional bearings 80 would present significant design challenges. Further, bearings 80 may be used in combination with conventional oil-lubricated bearings. For example, in one embodiment, conventional oil-lubricated bearings may be located at the ends of shafts 34, 36, and one or more bearings 80 may be located along central or mid-span regions of shafts 34, 36.
Referring still to the embodiment of
Referring still to the exemplary embodiment of
During operation of the turbofan engine 102, a volume of air 58 enters the turbofan through an associated inlet 60 of the nacelle 50 and/or fan section 14. As the volume of air 58 passes across the fan blades 40, a first portion of the air 58 as indicated by arrows 62 is directed or routed into the bypass airflow passage 56 and a second portion of the air 58 as indicated by arrow 64 is directed or routed into the core air flowpath, or more specifically into the LP compressor 22. The ratio between the first portion of air 62 and the second portion of air 64 is commonly known as a bypass ratio. The pressure of the second portion of air 64 is then increased as it is routed through the high pressure (HP) compressor 24 and into the combustion section 26, where it is mixed with fuel and burned to provide combustion gases 66.
The combustion gases 66 are routed through the HP turbine 28 where a portion of thermal and/or kinetic energy from the combustion gases 66 is extracted via sequential stages of HP turbine stator vanes 68 that are coupled to the outer casing 18 and HP turbine rotor blades 70 that are coupled to the HP shaft or spool 34, thus causing the HP shaft or spool 34 to rotate, thereby supporting operation of the HP compressor 24. The combustion gases 66 are then routed through the LP turbine 30 where a second portion of thermal and kinetic energy is extracted from the combustion gases 66 via sequential stages of LP turbine stator vanes 72 that are coupled to the outer casing 18 and LP turbine rotor blades 74 that are coupled to the LP shaft or spool 36, thus causing the LP shaft or spool 36 to rotate, thereby supporting operation of the LP compressor 22 and/or rotation of the fan 38.
The combustion gases 66 are subsequently routed through the jet exhaust nozzle section 32 of the core turbine engine 16 to provide propulsive thrust. Simultaneously, the pressure of the first portion of air 62 is substantially increased as the first portion of air 62 is routed through the bypass airflow passage 56 before it is exhausted from a fan nozzle exhaust section 76 of the turbofan, also providing propulsive thrust. The HP turbine 28, the LP turbine 30, and the jet exhaust nozzle section 32 at least partially define a hot gas path 78 for routing the combustion gases 66 through the core turbine engine 16.
It should be appreciated, however, that the exemplary turbofan engine 102 depicted in
According to example aspects of the present disclosure, the engine 102 can include an electronic engine controller (EEC) 104. The EEC 104 can record operational and performance data for the engine 102. The EEC 104 can be in communication with a wireless communication unit (WCU) 106. The WCU 106 can be mounted on the engine 102. The EEC 104 and the WCU 106 can communicate using wireless and/or wired communications. In some embodiments, the communication with the EEC 104 and the WCU 106 can be one-way communication (e.g., the EEC 104 to the WCU 106). In some embodiments, the communication with the EEC 104 and the WCU 106 can be two-way communication. The nacelle 50 can include an antenna (not shown). In another aspect, the antenna can be integrated with the WCU 106.
In particular implementations, the WCU 302 and the EEC 304 can communicate via a connection 308 with, for instance, the TIA-485 interface 306. The connection 308 can, for example, accommodate other interfaces, such as an Ethernet connection, a wireless connection, or other interface. The connection 308 can be, for example, a wired connection, such as, for example, an Ethernet connection. The connection 308 can be, for example, a wireless connection, such as, for example, a BlueTooth® connection. The WCU 302 can transmit addressing (e.g., memory location, bit size, etc.) information and/or acknowledgements 310 to the EEC 304 via the connection 308. The WCU 302 can receive data 312 from the EEC 304 via the connection 308 and can store the data in one or more memory devices. The data 312 can be, for instance, continuous engine operation data, such as thrust level inputs, engine response to thrust level inputs, vibration, flameout, fuel consumption, ignition state, N1 rotation, N2 rotation, N3 rotation, anti-ice capability, fuel filter state, fuel valve state, oil filter state, etc.
The WCU 302 can be configured to communicate the data 312 over a wireless network via an antenna 314 upon the occurrence of one or more trigger conditions, such as trigger conditions based on signals indicative of an aircraft being on the ground or near the ground. In some embodiments, the antenna 314 can be integrated into the WCU 302. In some embodiments, the WCU 302 can include a radio frequency (RF) interface 316. In an embodiment, the antenna 314 can be in communication with the RF interface 316 via an RF cable 318. In an embodiment, the antenna 314 can be placed in the nacelle 50 of an aircraft 102. The nacelle 50 of an aerial vehicle 100 can be made of conductive materials, which can obstruct cellular reception and transmission. In some embodiments, the antenna can be a directional antenna that is oriented near one or more gaps in the nacelle 50 to permit the antenna 314 to communicate directionally outside of the nacelle 50 when the aerial vehicle 100 is landing or upon the occurrence of other trigger conditions.
In some embodiments, the WCU 302 can include an interface for communicating with a portable maintenance access terminal (PMAT) 320. The access terminal can be implemented, for instance, on a laptop, tablet, mobile device, or other suitable computing device. The interface can be, for instance, a Generic Stream Encapsulation (GSE) interface 322 or other suitable interface. The PMAT 320 can be used by a maintenance person to calibrate, troubleshoot, initialize, test, etc. the WCU 302.
The WCU 302 can communicate using wireless communication. The wireless communication can be performed using any suitable wireless technique and/or protocol. For example, the wireless communication can be performed using peer-to-peer communications, network communications, cellular-based communications, satellite-based communications, etc. As another example, the wireless communications can be performed using Wi-Fi, Bluetooth, ZigBee, etc.
At (402), a message can be received via an aviation messaging protocol. For instance, the WCU 302 can receive a message from the EEC 304 via an aviation messaging protocol. The WCU 302 can be associated with an engine and/or an aerial vehicle. The aviation messaging protocol can be communicated over a Telecommunications Industry Association (TIA) TIA-485 interface. The WCU 302 can comprise one or more processors and/or one or more computing devices. The WCU 302 can comprise one or more field-programmable gate arrays (FPGAs). At (404), the message can be encapsulated in a packet. For instance, the WCU 302 can encapsulate the message in a packet. The packet can include a User Datagram Protocol (UDP) format. At (406), the packet can be transmitted via an Ethernet connection. For instance, the WCU 302 can transmit the packet via an Ethernet connection.
Optionally, a second message can be received via the aviation messaging protocol. For instance, the WCU 302 can receive a second message from the EEC 304 via the aviation messaging protocol. The second message can be encapsulated in a second packet. For instance, the WCU 302 can encapsulate the second message in a second packet. The second packet can include the UDP format. The first message and the second message can be multiplexed into a stream. For instance, the WCU 302 can multiplex the first message and the second message into a stream. The stream comprising the first and second messages can be transmitted via the Ethernet connection. For instance, the WCU 302 can transmit the stream comprising the first and second messages via the Ethernet connection.
The one or more memory device(s) 506 can store information accessible by the one or more processor(s) 504, including computer-readable instructions 508 that can be executed by the one or more processor(s) 504. The instructions 508 can be any set of instructions that when executed by the one or more processor(s) 504, cause the one or more processor(s) 504 to perform operations. The instructions 508 can be software written in any suitable programming language or can be implemented in hardware. In some embodiments, the instructions 508 can be executed by the one or more processor(s) 504 to cause the one or more processor(s) 504 to perform operations, such as the operations for recording and communicating engine data, as described with reference to
The memory device(s) 506 can further store data 510 that can be accessed by the processors 504. For example, the data 510 can include data associated with engine performance, engine operation, engine failure, errors in engine performance, errors in engine operation, errors in engine behavior, expected engine behavior, actual engine behavior, etc., as described herein. The data 510 can include one or more table(s), function(s), algorithm(s), model(s), equation(s), etc. according to example embodiments of the present disclosure.
The one or more computing device(s) 502 can also include a communication interface 512 used to communicate, for example, with the other components of system. For example, the communication interface 512 can accommodate communications with the EEC 304, the antenna 314, the PMAT 320, a ground control system, other WCUs 302, a central computing device, any other device, and/or any combination of the foregoing. The communication interface 512 can include any suitable components for interfacing with one or more network(s), including for example, transmitters, receivers, transceivers, ports, controllers, antennas, or other suitable components.
Data according to an aviation messaging protocol, such as a data communicated over Telecommunications Industry Association (TIA) TIA-485 interface can be converted to Ethernet packets from an Ethernet interface. The one or more ECEB UARTs 612, 614 can receive data with the format of the aviation messaging protocol. The ECEB UARTs 612, 614 can transmit the data to one or more data receive buffers 616, 618. The one or more data receive buffers 616, 618, 620, 622 can transmit the data to the Ethernet interface 600. The Ethernet interface 600 can encapsulate the data into packets. The Ethernet interface 600 can transmit the packets to one or more memory devices and/or one or more processors configured to interpret the Ethernet packets.
Data according to an aviation messaging protocol can be converted to Ethernet packets for an Ethernet interface 700. The one or more blocks 718 can verify the data via the data validity verification. The one or more blocks 718 can encapsulate the verified data. The data can be transmitted to a transmit buffer 724. The transmit buffer 724 can transmit the data to the packetizier 702. The packetizier 702 can encapsulate the data into a packet. The packetizer 702 can transmit the packet via an Ethernet interface.
Although specific features of various embodiments may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the present disclosure, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The present application claims the benefit of priority of U.S. Provisional Patent Application No. 62/356,678, entitled “AVIATION PROTOCOL CONVERSION,” filed Jun. 30, 2016, which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5444861 | Adamec et al. | Aug 1995 | A |
5848367 | Lotocky et al. | Dec 1998 | A |
6092008 | Bateman | Jul 2000 | A |
6351603 | Waithe et al. | Feb 2002 | B2 |
6353734 | Wright et al. | Mar 2002 | B1 |
6385513 | Murray et al. | May 2002 | B1 |
6628995 | Korson et al. | Sep 2003 | B1 |
6671589 | Holst et al. | Dec 2003 | B2 |
6831912 | Sherman | Dec 2004 | B1 |
6868325 | Menon et al. | Mar 2005 | B2 |
6894611 | Butz et al. | May 2005 | B2 |
7218277 | Smith | May 2007 | B1 |
7595730 | Ziarno | Sep 2009 | B2 |
7636568 | Gould et al. | Dec 2009 | B2 |
7720442 | McGuffin | May 2010 | B2 |
7755512 | Ziarno | Jul 2010 | B2 |
7844385 | Loda et al. | Nov 2010 | B2 |
7908042 | Brinkley et al. | Mar 2011 | B2 |
8051031 | Sims, III et al. | Nov 2011 | B2 |
8055393 | Sims, III et al. | Nov 2011 | B2 |
8121140 | McGuffin et al. | Feb 2012 | B2 |
8140298 | Bordry | Mar 2012 | B2 |
8220038 | Lucchesi et al. | Jul 2012 | B1 |
8259002 | Vacanti et al. | Sep 2012 | B2 |
8284674 | True et al. | Oct 2012 | B2 |
8285865 | Gruyer et al. | Oct 2012 | B2 |
8351927 | Wright et al. | Jan 2013 | B2 |
8401021 | Buga et al. | Mar 2013 | B2 |
8457034 | Kuehl et al. | Jun 2013 | B2 |
8462793 | Turcot | Jun 2013 | B2 |
8615384 | Angus et al. | Dec 2013 | B2 |
8639401 | Bailey et al. | Jan 2014 | B2 |
8683266 | Migliasso et al. | Mar 2014 | B2 |
8699403 | Lynch et al. | Apr 2014 | B2 |
8723692 | Farley et al. | May 2014 | B2 |
8732812 | Chopart | May 2014 | B2 |
8781982 | Das et al. | Jul 2014 | B1 |
8798817 | O'Dell et al. | Aug 2014 | B2 |
8823357 | Shafer et al. | Sep 2014 | B2 |
8856277 | Saugnac | Oct 2014 | B2 |
8881294 | Johnson et al. | Nov 2014 | B2 |
8903601 | Muirhead | Dec 2014 | B2 |
8984346 | Frayssignes et al. | Mar 2015 | B2 |
8988249 | Chevrette et al. | Mar 2015 | B2 |
8997197 | Nord et al. | Mar 2015 | B2 |
9026273 | Ziarno | May 2015 | B2 |
9026279 | Ziarno | May 2015 | B2 |
9038047 | Young et al. | May 2015 | B2 |
9092629 | Guzman et al. | Jul 2015 | B2 |
9100361 | Lucchesi et al. | Aug 2015 | B1 |
9124580 | Sampigethaya | Sep 2015 | B1 |
9208308 | McLain et al. | Dec 2015 | B2 |
9225765 | Kimberly et al. | Dec 2015 | B2 |
9313276 | Pereira | Apr 2016 | B2 |
9367970 | Ziarno | Jun 2016 | B2 |
9369548 | Voigt et al. | Jun 2016 | B2 |
9390381 | Davari et al. | Jul 2016 | B2 |
9418493 | Dong | Aug 2016 | B1 |
9420595 | Beacham, Jr. et al. | Aug 2016 | B2 |
9426650 | Bangole et al. | Aug 2016 | B2 |
9481473 | Skertic | Nov 2016 | B2 |
9490876 | Choi | Nov 2016 | B2 |
9576404 | Ziarno et al. | Feb 2017 | B2 |
9639997 | Chai et al. | May 2017 | B2 |
20030154285 | Berglund | Aug 2003 | A1 |
20030158963 | Sturdy et al. | Aug 2003 | A1 |
20030225492 | Cope et al. | Dec 2003 | A1 |
20080272915 | Day | Nov 2008 | A1 |
20090058682 | True | Mar 2009 | A1 |
20110125348 | Sandell et al. | May 2011 | A1 |
20110208851 | Frost | Aug 2011 | A1 |
20120095662 | Roy et al. | Apr 2012 | A1 |
20130077557 | Chen | Mar 2013 | A1 |
20130315243 | Huang | Nov 2013 | A1 |
20140013002 | Holstein et al. | Jan 2014 | A1 |
20140068265 | Irwin | Mar 2014 | A1 |
20150058446 | Eriksson | Feb 2015 | A1 |
20150161618 | Angus et al. | Jun 2015 | A1 |
20150171968 | Featherston | Jun 2015 | A1 |
20150222604 | Ylonen | Aug 2015 | A1 |
20150244683 | Schreiber | Aug 2015 | A1 |
20150276837 | Kim et al. | Oct 2015 | A1 |
20150293765 | Angus et al. | Oct 2015 | A1 |
20150330869 | Ziarno | Nov 2015 | A1 |
20160075443 | Schmutz et al. | Mar 2016 | A1 |
20160090192 | Dunn | Mar 2016 | A1 |
20160092192 | Frayssignes et al. | Mar 2016 | A1 |
20160098259 | Mitchell | Apr 2016 | A1 |
20160110179 | Weckesser et al. | Apr 2016 | A1 |
20160124738 | Haukom et al. | May 2016 | A1 |
20160154391 | Pavaskar et al. | Jun 2016 | A1 |
20160200455 | Gadgil et al. | Jul 2016 | A1 |
20160203659 | Chai et al. | Jul 2016 | A1 |
20160219022 | Peterson | Jul 2016 | A1 |
20160219024 | Verzun | Jul 2016 | A1 |
20160257429 | Szeto | Sep 2016 | A1 |
20160294882 | Michaels | Oct 2016 | A1 |
20160314632 | Lu et al. | Oct 2016 | A1 |
20160337238 | Hellkvist | Nov 2016 | A1 |
20170086112 | Xue | Mar 2017 | A1 |
20170142165 | Moore | May 2017 | A1 |
20170346700 | DeCusatis | Nov 2017 | A1 |
20170367007 | Sirotkin | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
204495911 | Jul 2015 | CN |
2579473 | Aug 2016 | EP |
2957370 | Oct 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20180006708 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62356678 | Jun 2016 | US |