The invention relates to an axial ball joint, in particular for use with a steering gear, with a housing that is open to one side and has a housing pin arranged at the front, a ball with a pivot pin and a bearing shell arranged between housing and ball.
Similar axial ball joints are generally known and are used particularly in the field of automobile steering gears, wherein the steering gears include a corresponding limit stop in the region of maximum displacements. If the steering gear is moved to the corresponding region of the limit stop, then the mechanical limit stop of the steering displacement causes a hard stop of the steering gear in the end region. This problem is known since some time, and attempts have therefore been made to develop an impact damping mechanism for such steering gears. For example, reference is made here to the documents EP 1 122 149 A1, U.S. Pat. No. 5,788,009, DE 600 01 626 T2, DE 697 25 931 T2, EP 1 429 951 B1 and JP 08-133 102 A. These documents describe steering gears which include damping systems for impact damping of the steering gear. However, the damping systems described therein have a relatively complex design and are arranged on the universal shaft and/or on the housing of the steering gear.
It is therefore an object of the invention to provide a damping mechanism for an axial ball joint which can be easily integrated in the vehicle steering mechanism.
This object is attained with the features of the independent claim. Advantageous embodiments are recited in the dependent claims and in the specification.
The inventors have become aware of that the design of a vehicle steering gear with impact damping can be significantly simplified by arranging the required damping element in the axial ball joint itself, in particular when an elastic damping element for impact damping is integrated on the housing side of the housing of the axial ball joint, which is provided with a pivot pin.
According to this fundamental concept, the inventors propose an axial ball joint, in particular for use in a steering gear, which includes a housing which is open on one side and has a housing pin arranged at the front, a ball with a pivot pin and a bearing shell arranged between the housing and the ball, wherein with the improvement according to the invention, the housing has on the housing side, which is provided with the pivot pin, at least one elastic damping element for impact damping.
This embodiment of the axial ball joint obviates the need for a complex structure of a steering gear and/or a relatively complex installation of a steering mechanism, because damping of the vehicle steering mechanism or the steering gear, respectively, is produced only by a suitably configured axial ball joint.
In an advantageous embodiment of the invention, the inventors propose that the damping element has an annular shape, whereby an unprotected housing surface, which is set back with respect to the at least one annular damping element, is preferably formed between the annular damping element and the housing pin. This has the effect that when the steering mechanism strikes the maximum deflection or the steering gear is otherwise sudden strongly loaded, the damping element responds first, whereas for an overly large load, a metal impact surface, namely the unprotected housing surface, is again available.
In this way, the elastic damping element cannot be destroyed by excessive compression.
Advantageously, the annular damping element may be inserted in a shoulder on the housing side of the housing that has the pivot pin; alternatively, a groove can be provided on the housing side of the housing that has the housing pin, wherein the annular damping element can be inserted in the groove.
The damping element may at least be partially made of an elastomer. For example, the annular damping element may be produced from a plastic ring and an elastomer overmolded over the ring. Advantageously, the plastic ring adds to the dimensional stability of the damping element and the plastic ring may be easily clamped onto the housing, whereas the overmolded elastic elastomer takes over the axial damping work.
The annular damping element may be, for example, vulcanized directly onto the housing. Alternatively, however, this annular damping element may be directly adhesively bonded on the housing or pressed onto the housing.
Sufficient elasticity of the damping element can also be achieved by constructing the plastic ring with an elastic response, i.e., the plastic ring may have a V-shaped configuration or a W-shaped configuration, as viewed in cross-section of the plastic ring, so that the plastic ring can be compressed with elastic deformation. The plastic ring then operates like a spring.
Additionally, the annular damping element may also be provided with a metal insert which, on one hand, provides a secure seat for the annular damping element in a groove or on a shoulder on the housing. On the other hand, this metal insert may also operate as an additional elastic component, thereby optionally providing the damping element with two-step elasticity.
To improve the seat of the annular elastic damping element and add firmness, the shoulder or the groove may additionally have an undercut, for example in form of an additional groove or in form of a conical shape of the shoulder, so that the elastic damping element may be clipped in this groove; alternatively, a positive lock may be produced with suitable vulcanization, which prevents the damping element from becoming easily detached.
It should be noted that the aforedescribed rotationally-symmetric damping element can not only be used as a single damping element in the region of the housing side of the housing that ahs the pivot pin, but several concentrically arranged annular damping elements with the aforedescribed properties may be installed, if enough installation space is available, commensurate with the size of the axial ball joint.
According to another embodiment of the axial ball joint of the invention, a plurality of damping elements are placed on the housing side of the housing of the axial ball joint that has the pivot pin, wherein the damping elements are no longer rotationally symmetric with respect to the rotation axis of the housing, but several elements are arranged about the rotation axis.
The damping elements may have different shapes, wherein damping elements in the shape of a segment of a circle or a circle, optionally also elliptical damping elements, should be mentioned as preferred embodiments.
It is proposed to install these damping elements on the housing side of the housing provided that has the pivot pin, by inserting the damping elements in recesses disposed in the housing. These damping elements may at least be partially made of an elastomer or of a combination of plastic and an elastomer overmolded over the plastic.
The damping elements may also be directly vulcanized on the housing or adhesively bonded to the housing.
The damping elements may also be pressed into respective recesses disposed on the housing side of the housing that has the pivot pin, wherein a metal insert may advantageously be employed which adds dimensional stability to the damping elements. Moreover, the recesses may also include undercuts for improved seating of the employed damping elements.
The invention will now be described with reference to the Figures, where only the features necessary for an understanding of the invention are illustrated.
It is shown in:
When the axial ball joint 1 constructed according to the invention is used in a steering gear, the maximal excursion can be limited by a mechanical stop on the housing 2. The damping element 7 prevents a hard impact. The steering gear housing typically operates as a mechanical stop. Employing the damping element significantly reduces the mechanical load on the components of the entire steering system, while also reducing noise generation. With the simple structure of the axial ball joint 1 according to the invention with the integrated damping which employs one or more damping elements on the housing of the axial ball joint, effective impact damping can be implemented in a simple and cost-effective manner.
This section through the housing 2 also shows an additional surface 8 disposed between the housing pin 3 and the damping element 7 which can operate as an additional impact surface should the spring deflection of the damping element become excessive.
For example,
It should be mentioned that in the context of the invention several annular damping elements arranged concentrically on the housing of the axial ball joint may be used.
While
It should be noted that such undercuts can also be implemented in conjunction with the annular damping elements illustrated in
Although in the illustrated preferred examples, the damping elements are at least partially made of an elastomer, the subject matter of the invention shall not be limited to these embodiments. It is also within the scope of the invention to construct the annular damping elements arranged above the housing pin or the plurality of individual damping elements arranged above the housing pin as separately formed spring elements, for example disk springs, or other elastic inserts or annular spring elements.
It will be understood that the aforedescribed features of the invention can not only be used in the described combination, but also in other combinations or separately, without going beyond the scope of the invention. It is also within the context of the invention to reverse the functions of the individual mechanical elements of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 007 107.2 | Jan 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE08/50042 | 12/10/2008 | WO | 00 | 6/29/2010 |