The embodiments described herein relate generally to gas turbine engines and more particularly relate to an axial compressor endwall treatment for a gas turbine engine and a method for controlling leakage flow therein.
As is known, an axial compressor for a gas turbine engine may include a number of stages arranged along an axis of the compressor. Each stage may include a rotor disk and a number of compressor blades, also referred to herein as rotor blades, arranged about a circumference of the rotor disk. In addition, each stage may further include a number of stator blades, disposed adjacent the rotor blades and arranged about a circumference of the compressor casing.
During operation of a gas turbine engine using a multi-stage axial compressor, a turbine rotor is turned at high speeds by a turbine so that air is continuously induced into the compressor. The air is accelerated by the rotating compressor blades and swept rearwards onto the adjacent rows of stator blades. Each rotor blade/stator blade stage increases the pressure of the air. In addition, during operation a portion of the compressed air may pass downstream about a tip of each of the compressor blades and/or stator blades as a leakage flow. Such stage-to-stage leakage of compressed air as leakage flow may affect the stall point of the compressor.
Compressor stalls may reduce the compressor pressure ratio and reduce the airflow delivered to a combustor, thereby adversely affecting the efficiency of the gas turbine. A rotating stall in an axial-type compressor typically occurs at a desired peak performance operating point of the compressor. Following rotating stall, the compressor may transition into a surge condition or a deep stall condition that may result in a loss of efficiency and, if allowed to be prolonged, may lead to failure of the gas turbine.
The operating range of an axial compressor is generally limited due to weak flow in rotor tips, where the specific rotor stall point is determined by the operating conditions and compressor design. Prior attempts to increase the range of this operation and increase the stall margin have included flow control based techniques such as plasma actuation and suction/blowing near a blade tip. However, such attempts significantly increase compressor complexity and weight. Other attempts include end-wall treatments such as circumferential grooves, axial grooves, or the like. Early attempts have had a substantial impact on design point efficiency with very minimal benefit to stall margin.
Thus, there is a desire for an improved axial compressor for a gas turbine engine and a method for controlling leakage flow about one or more blade tips therein. Specifically, such a compressor may control leakage of compressed air through a carefully designed endwall treatment proximate the rotor blades and/or the stator blades that provides desired recirculation of the leakage flow. Such leakage control may increase operating range and surge margin of the compressor and the overall gas turbine engine while minimizing the detrimental impact on design point efficiency.
Aspects and advantages of the disclosure are set forth below in the following description, or may be obvious from the description, or may be learned through practice of the disclosure.
In one aspect, a compressor is provided. The compressor includes a compressor endwall defining a generally cylindrical flow passage. The compressor endwall includes a compressor casing and a compressor hub disposed concentrically about and coaxially along a longitudinal centerline axis, at least one set of rotor blades, at least one set of stator blades and one or more endwall treatments having a radial height formed in an interior surface of the at least one of the casing or the hub. Each of the at least one set of rotor blades includes a plurality of rotor blades coupled to the compressor hub and extending between the compressor hub and the compressor casing and defining a blade passage there between each of the rotor blades. The compressor casing circumscribes the at least one set of rotor blades to define an annular gap between the compressor casing and a plurality of rotor blade tips of the plurality of rotor blades. Each of the at least one set of stator blades includes a plurality of stator blades coupled to the compressor casing and extending between the compressor casing and the compressor hub and defining a blade passage there between each of the stator blades. The stator blades are disposed relative to the compressor hub to define an annular gap between the compressor hub and a plurality of stator blade tips of the plurality of stator blades. The one or more endwall treatments are configured to return a flow adjacent one of the plurality of rotor blade tips or stator blade tips to the cylindrical flow passage upstream of a point of removal of the flow. Each of the endwall treatments defines a front wall including a first axial lean angle α1 relative to the longitudinal centerline axis, a rear wall including a second axial lean angle α2 relative to the longitudinal centerline axis, an outer wall extending between the front wall and the rear wall, an axial overhang extending upstream to overhang at least one of the at least one set of rotor blades or the at least one set of stator blades, an axial overlap extending downstream to overlap at least one of the at least one set of rotor blades or the at least one set of stator blades, a first tangential lean angle β1 relative to a circumferential surface of the compressor endwall and a second tangential lean angle β2 relative to the circumferential surface of the compressor endwall. One of the axial lean angle α1 is not equal to the axial lean angle α2 or the tangential lean angle β1 is not equal to the tangential lean angle β2.
In another aspect, an axial compressor is provided. The axial compressor includes a compressor endwall defining a generally cylindrical flow passage, one or more sets of rotor blades, one or more sets of stator blades and one or more discrete axial slots. The compressor endwall includes a compressor casing and a compressor hub disposed concentrically about and coaxially along a longitudinal centerline axis. Each of the one or more sets of rotor blades includes a plurality of rotor blades coupled to the compressor hub and extending between the compressor hub and the compressor casing and defining a blade passage there between each of the plurality of rotor blades. The compressor casing circumscribes the at least one set of rotor blades to define an annular gap between the compressor casing and a plurality of rotor blade tips of the plurality of rotor blades. Each of the one or more sets of stator blades includes a plurality of stator blades coupled to the compressor casing and extending between the compressor casing and the compressor hub and defining a blade passage there between each of the plurality of stator blades. The stator blades are disposed relative to the compressor hub to define an annular gap between the compressor hub and a plurality of stator blade tips of the plurality of stator blades. The one or more discrete axial slots are defined circumferentially about at least one of the compressor hub or the compressor casing. The one or more discrete axial slots are configured to control a flow of leakage air about at least one of the plurality of stator blades tips or the plurality of rotor blade tips. Each of the endwall treatments defines a front wall including a first axial lean angle α1 relative to the longitudinal centerline axis, a rear wall including a second axial lean angle α2 relative to the longitudinal centerline axis, an outer wall extending between the front wall and the rear wall, an axial overhang extending upstream to overhang at least one of the one or more sets of rotor blades or the one or more sets of stator blades, an axial overlap extending downstream to overlap at least one of the one or more sets of rotor blades or the one or more sets of stator blades, a first tangential lean angle β1 relative to a circumferential surface of the compressor endwall and a second tangential lean angle β2 relative to the circumferential surface of the compressor endwall. One of the axial overlap of each of the one or more discrete axial slots is 0% of a respective blade passage or the axial overhang of each of the one or more discrete axial slots is 0% of a respective blade passage.
In yet another aspect, an engine is provided. The engine includes a fan assembly and a core engine downstream of the fan assembly. The core engine includes a compressor, a combustor and a turbine. The compressor, the combustor and the turbine are configured in a downstream axial flow relationship. The compressor further includes a compressor endwall defining a generally cylindrical flow passage, at least one set of rotor blade, at least one set of stator blades and one or more endwall treatments. The compressor endwall includes a compressor casing and a compressor hub disposed concentrically about and coaxially along a longitudinal centerline axis. Each of the at least one set of rotor blades includes a plurality of rotor blades coupled to the compressor hub and extending between the compressor hub and the compressor casing. The compressor casing circumscribes the at least one set of rotor blades to define an annular gap between the compressor casing and a plurality of rotor blade tips of the plurality of rotor blades. Each of the at least one set of stator blades includes a plurality of stator blades coupled to the compressor casing and extending between the compressor casing and the compressor hub. The stator blades are disposed relative to the compressor hub to define an annular gap between the compressor hub and a plurality of stator blade tips of the plurality of stator blades. The one or more endwall treatments have a height formed in an interior surface of the casing and are configured to return a flow adjacent the plurality of rotor blade tips to the cylindrical flow passage upstream of a point of removal of the flow. Each of the one or more endwall treatments defines a front wall having a first axial lean angle α1 relative to the longitudinal centerline axis, a rear wall having a second axial lean angle α2 relative to the longitudinal centerline axis, an outer wall extending between the front wall and the rear wall, an axial overhang extending upstream to overhang at least one of the at least one set of rotor blades or the at least one set of stator blades, an axial overlap extending downstream to overlap at least one of the at least one set of rotor blades or the at least one set of stator blades, a first tangential lean angle β1 relative to a circumferential surface of the compressor endwall and a second tangential lean angle β2 relative to the circumferential surface of the compressor endwall, wherein at least one of axial lean angle α1 is not equal to the axial lean angle α2 or the tangential lean angle β1 is not equal to the tangential lean angle β2.
A full and enabling disclosure of the present disclosure, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
The present disclosure will be described for the purposes of illustration only in connection with certain embodiments; however, it is to be understood that other objects and advantages of the present disclosure will be made apparent by the following description of the drawings according to the disclosure. While preferred embodiments are disclosed, they are not intended to be limiting. Rather, the general principles set forth herein are considered to be merely illustrative of the scope of the present disclosure and it is to be further understood that numerous changes may be made without straying from the scope of the present disclosure.
Preferred embodiments of the present disclosure are illustrated in the figures with like numerals being used to refer to like and corresponding parts of the various drawings. In addition, reference throughout the specification to “one embodiment”, “another embodiment”, “an embodiment”, and so forth, means that a particular element (e.g., feature, structure, and/or characteristic) described in connection with the embodiment is included in at least one embodiment described herein, and may or may not be present in other embodiments. It is to be understood that the described inventive features may be combined in any suitable manner in the various embodiments. It is also understood that terms such as “top”, “bottom”, “outward”, “inward”, and the like are words of convenience and are not to be construed as limiting terms. It is to be noted that the terms “first,” “second,” and the like, as used herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., includes the degree of error associated with measurement of the particular quantity).
Embodiments disclosed herein relate to a compressor apparatus of an aircraft engine including one or more endwall treatments to control leakage flow there through the compressor. In contrast to known means of controlling leakage flow through a compressor, the endwall treatments as disclosed herein provide for an increase in the limit of operability of the compressor, minimizing in efficiency penalty of the compressor and a resultant delay in rotor stall.
Referring to the drawings wherein identical reference numerals denote the same elements throughout the various views,
The core gas turbine engine 20 includes a high-pressure compressor 30, a combustor 32, and a high-pressure turbine 34. The high-pressure compressor 30 includes a plurality of rotor blades 36 that extend substantially radially outward from a compressor hub 38. The high-pressure compressor 30 and the high-pressure turbine 34 are coupled together by a second drive shaft 41. The first and second drive shafts 40 and 41 are rotatably mounted in bearings 43 which are themselves mounted in a fan frame 45 and a turbine rear frame 47. The engine assembly 10 also includes an intake side 44, defining a fan intake 49, a core engine exhaust side 46, and a fan exhaust side 48.
During operation, the fan assembly 16 compresses air entering the engine assembly 10 through the intake side 44. The airflow exiting the fan assembly 16 is split such that a portion 50 of the airflow is channeled into the booster compressor 18, as compressed airflow, and a remaining portion 52 of the airflow bypasses the booster compressor 18 and the core gas turbine engine 20 and exits the engine assembly 10 via a bypass duct 51, through the fan exhaust side 48 as bypass air. More specifically, the bypass duct 51 extends between an interior wall 15 of the fan casing 14 and an outer wall 17 of a booster casing 19. This portion 52 of the airflow, also referred to herein as bypass air flow 52, flows past and interacts with the structural strut members 28, the outlet guide blades 29 and a heat exchanger apparatus 54. The plurality of rotor fan blades 24 compress and deliver the compressed airflow 50 towards the core gas turbine engine 20. Furthermore, the airflow 50 is further compressed by the high-pressure compressor 30 and is delivered to the combustor 32. Moreover, the compressed airflow 50 from the combustor 32 drives the rotating high-pressure turbine 34 and the low-pressure turbine 22 and exits the engine assembly 10 through the core engine exhaust side 46.
Referring now to
During operation, an operating range of the compressor 60 is generally limited due to leakage flow, as indicated by directional arrows 74, proximate the rotor blade tips 63. In addition, leakage flow (not shown) may be present proximate the stator blade tips 69. A specific rotor stall point is determined by the operating conditions and the compressor design. To increase the range of this operation, previous compressors have included endwall treatments (not shown), such as circumferential grooves, in an attempt to provide an increase in the operating range by redirecting and/or minimizing leakage flow 74.
Referring more specifically to
As is typical in the art, each gap 90 and 92 is sized to facilitate minimizing a quantity of compressed air 50 that bypasses the rotor blades 80 and stator blade 86, respectively, defining the leakage flow 74 (
Referring now to
Specifically, in the exemplary illustrated embodiment, the one or more endwall treatments 94, and more particularly, the plurality of discrete slots 96 facilitates reducing the detrimental effect of leakage flows of compressed air between the compressor casing 82 and the rotor blade tip 81. More specifically, the plurality of discrete slots 96 facilitates the conversion of the uselessness of leakage flows into useful flows to increase the stall margin. During operation, the portion of air flow 50 flows into the aircraft engine assembly 10 through the fan intake 49 (
The one or more endwall treatments 94, and more particularly the plurality of discrete slots 96, assist in delaying rotor stall by initially extracting weak tip flow through an aft segment 100 of a portion 58 of flow 50, also referred to herein as leakage flow, that is exposed to the rotor blade tip 81. The portion 58 of flow 50 is then recirculated and strengthened within each of the slots 96, and injected back into the main flow 50 ahead of the rotor blade 80 through the forward segment as a reinjected flow 59. It should be understood that the position of the plurality of slots 96 relative to the rotor blade tips 81, circumferential distribution about the casing 82 and repetition pattern of the plurality of slots 96 is shown only for illustration purposes only. In practice, the specific configuration of the one or more endwall treatments 94 is optimized for the application on which they are deployed.
Referring again to
As previously indicated and illustrated, the front wall 102 and the rear wall 104 of each of the plurality of slots 96 are independently designed to incline at one or more angles, referred to herein as axial lean angles α1 and α2, with respect to the longitudinal centerline axis 12 of the casing 82. In an embodiment, the first axial lean angle α1 and the second axial lean angle α2 are between 10-170 degrees. In an embodiment, first axial lean angle α1 and the second axial lean angle α2 may be equal. In an embodiment, the first axial lean angle α1 and the second axial lean angle α2 may not be equal. In an embodiment first axial lean angle α1 is aligned with the incoming main flow 50 in order to minimize the mixing loss between the incoming flow 50 and the re-injected flow 59 from each of the plurality of slots 96. On the other hand, the second axial lean angle α2 is designed to effectively extract low momentum fluids from the main flow 50.
Referring now to
In this particular embodiment, to provide for recirculation of that portion 58 of compressed air 50 proximate the rotor blade tips 81 and the stator blade tips 87, the novel compressor 120 includes one or more endwall treatments 94, configured as a plurality of discrete slots 96 extending circumferentially about both the casing 82 and about the hub 84. More specifically, in this particular embodiment, the slots 96 are embedded in both the hub hardware, within an interior surface 89 of the hub 85, and the casing hardware, within an interior surface 83 of the casing 82. It should be understood, that anticipated is an embodiment including a plurality of slots 96 embedded in the hub hardware only.
The plurality of slots 96 are configured relative to the plurality of rotor blades 80, and more particularly the rotor blade tips 81 and the stator blades 86, and more particularly the stator blade tips 87. Similar to the previous embodiment, each of the plurality of slots 96 is defined by a front wall 102, a rear wall 104, and an outer wall 106, between the front wall 102 and the rear wall 104. Each of the plurality of slots 96 is further defined by an axial overhang 108, an axial overlap 110, a radial height 112, a first axial lean angle α1, a second axial lean angle α2, a first tangential lean angle and a second tangential lean angle (described presently).
With respect to the axial slot 96 configured proximate the rotor blades 80, the axial overhang 108 extends upstream of the rotor blades 80, and more particularly extends in line with a forward blade edge tip 81 of the rotor blades 80 to the front wall 102. The axial overhang 108 may vary between −10% to 60% of the axial chord “y”. It should be understood that an axial overhang 108 of −10% of the axial chord “y” means that the front wall 102 of the slot 96 is located 10% downstream of the forward blade edge tip 81. The axial overlap 110 extends from forward blade edge tip 81 of the rotor blades 80 in a downstream direction, thereby essentially overlapping a portion of the rotor blades 80. The axial overlap 110 may vary between −10% to 100% of the axial chord “y”. It should be understood that an axial overlap 110 of −10% of the axial chord “y” means that the rear wall 104 of the slot 96 is located 10% upstream of the forward blade edge tip 81.
With respect to the axial slot 96 configured proximate the stator blades 86, the axial overhang 108 extends upstream of the stator blades 86, and more particularly extends in line with an forward blade edge tip 87 of the stator blades 86 to the front wall 102. The axial overhang 108 may vary between −10% to 60% of the axial chord “y”. It should be understood that an axial overhang 108 of −10% of the axial chord “y” means that the front wall 102 of the slot 96 is located 10% downstream of the aft blade edge tip 87. The axial overlap 110 extends from the forward blade edge tip 87 of the stator blades 86 in a downstream direction, thereby essentially overlapping a portion of the stator blades 86. The axial overlap 110 may vary between −10% to 100% of the axial chord “y”. It should be understood that an axial overlap 110 of −10% of the axial chord “y” means that the rear wall 104 of the slot 96 is located 10% upstream of the forward blade edge tip 87. In an embodiment, the radial height 112 of each of the plurality of slots 96 is approximately 5-50% of the span “x” of the rotor blades 80 and the stator blades 86.
As previously indicated and illustrated, the front wall 102 and the rear wall 104 of each of the plurality of slots 96 are independently designed to incline at one or more angles, referred to as axial lean angles α1 and α2, with respect to the longitudinal centerline axis 12 of the casing 82. In an embodiment, the first axial lean angle α1 and the second axial lean angle α2 are between 10-170 degrees. In an embodiment, first axial lean angle α1 and the second axial lean angle α2 may be equal. In an embodiment, the first axial lean angle α1 and the second axial lean angle α2 may not be equal. In an embodiment first axial lean angle α1 is aligned with the incoming main flow 50 in order to minimize the mixing loss between the incoming flow 50 and the re-injected flow 59 from each of the plurality of slots 96. On the other hand, the second axial lean angle α2 is designed to effectively extract low momentum fluids from the main flow 50.
The embodiment disclosed in
Referring now to
In the embodiments of
The plurality of slots 132 are configured relative to the plurality of rotor blades 80, and more particularly the rotor blade tips 81. In alternate embodiment, the plurality of slots 132 may be embedded in the hub hardware, or both the hub hardware and the casing hardware. Similar to the previously described embodiments, each of plurality of slots 132 is defined by a front wall 102, a rear wall 104, and an outer wall 106, between the front wall 102 and the rear wall 104. Each of the plurality of slots 132 is further defined by an axial overhang 108, an axial overlap 110, a radial height 112, a first axial lean angle α1, a second axial lean angle α2, a first tangential lean angle β1 relative to a circumferential surface of the compressor endwall and a second tangential lean angle β2 relative to a circumferential surface of the compressor endwall, as best illustrated in
In the illustrated embodiment of
As best illustrated in
As best illustrated in
As best illustrated in
Referring more specifically to
As illustrated in
The embodiments disclosed in
Referring again to
Referring now to
Accordingly, as disclosed herein and as illustrated in
The proposed compressor endwall treatments, in addition, may provide an increase in hot day performance for the gas turbine engine, lower dependency on variable stator blades during startup, increase in performance of the rotors at the end of life clearances and lower reliance on transient bleed valves in aviation compressors during icing events.
Exemplary embodiments of an axial compressor endwall treatment and method of controlling leakage flow therein are described in detail above. Although the endwall treatments have been described with reference to an axial compressor, the endwall treatments as described above can be used in any axial flow system, including other types of engine apparatuses that include a compressor, and particularly those in which an increase in stall margin is desired. Other applications will be apparent to those of skill in the art. Accordingly, the axial compressor endwall treatment and method of controlling leakage flow as disclosed herein is not limited to use with the specified engine apparatus described herein. Moreover, the present disclosure is not limited to the embodiments of the axial compressor described in detail above. Rather, other variations of the axial, mixed and radial compressors including endwall treatment embodiments may be utilized within the spirit and scope of the claims.
This written description uses examples to disclose the disclosure, including the best mode, and also to enable any person skilled in the art to practice the disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
While there has been shown and described what are at present considered the preferred embodiments of the disclosure, it will be obvious to those skilled in the art that various changes and modifications can be made therein without departing from the scope of the disclosure defined by the appended claims.