The present disclosure relates to an axial fan assembly, such as for a vehicle cooling system.
Axial fans are used in vehicle cooling systems. Such fans can create a region of low air flow velocity both ahead of and behind the fan drive hub. When such a fan is closely coupled to a series of heat exchangers, this can result in poor utilization of the heat exchange surface near the area of low velocity. It is believed that system efficiency can be improved by pre-conditioning the air that enters the fan and post-conditioning the air that leaves the fan.
According to an aspect of the present disclosure, a fan assembly includes an axial flow fan which is positioned between an inlet stator and an outlet stator. The inlet stator has inlet stator blades which extend outwardly from a first inner ring. Each inlet stator blade has a downstream edge which has a tangent which is oriented at a first variable angle with respect to a plane which is perpendicular to an axis of the fan. The first angle increases with increasing distance from the first inner ring. The outlet stator has a plurality of outlet stator blades which extend outwardly from a second inner ring. Each outlet stator blade has an upstream edge which has a tangent which is oriented at a second variable angle with respect to a plane which is generally perpendicular to the fan axis. The second angle decreases with increasing distance from the second inner ring.
Referring to
Referring now to
Because the fan 20 is mounted in front of the radiator 12, the fan 20 is more accessible, and the inlet stator 18 functions as a finger guard. Thus, the inlet stator 18 functions both a finger guard and to “pre-swirl” the air so that the airflow better matches the geometry of the fan 20.
Referring now to
Preferably, the angle Bl varies as a function of Ur and the distance d1 according to the following equations, where Ur is the fan blade velocity, which changes as one moves from blade root to tip, Q is the volumetric air flow rate of the fan 20, A1 is the annular flow area of the inlet stator 18 between rings 30 and 32, and δ1 is the fan leading edge attack angle to vertical (specific to fan 20).
For Ur<(W1*cos(δ1))(distance d1 between 0 and d0),
B1=90+cos−1(V1÷(W12+Ur2−2*W1*Ur*cos(δ1))1/2), and
For Ur>(W1*cos(δ1))(distance d1 greater than d0),
B1=90−cos−1(V1÷(W12+Ur2−2*W1*Ur*cos(δ1))1/2),
where V1 (inlet stator air velocity)=Q÷A1, and W1 (fan inlet vector)=V1÷sin(δ1), and Ur=(fan speed*Pi*2*d1)÷60.
It should be noted, that, due to manufacturing constraints, it would be permissible or desirable to not allow the stator blade angle to exceed 90 degrees.
Referring now to
Referring now to
Preferably, the angle B2 varies as a function of the distance d2 according to the following equation, where Q is the volumetric air flow rate of the fan 20, A2 is the annular flow area of the outlet stator 22 between rings 50 and 54, and a2 is 90 minus the fan trailing edge attack angle to vertical (specific to fan 20).
B2=90−cos−1(V2÷(W22+Ur2−2*W2*Ur*cos(δ2))1/2)
where V2(outlet stator air velocity)=Q÷A2, W2(fan outlet vector)=V2÷cos a2, and δ2=sih−1(V2*W2), and Ur=(fan speed*Pi*2*d2)÷60.
The inlet stator 18 both conditions the air entering the fan 20 and provides a functional guard to the fan 20. The inlet stator 18 pre-conditions the air flowing into the fan 20 to improve the pumping efficiency and flow rate of the simple and easily manufactured fan 20. The outlet stator 22 creates a uniform airflow distribution on the face of the heat exchanger assembly 12 and aligns the flow direction of the air with the flow passages (not shown) in the heat exchanger assembly 12. This more uniform airflow increases the cooling efficiency and capacity of the heat exchanger assembly 12.
The inlet 18 and outlet 22 stators are designed with an air foil shape that changes angle with fan blade length (variable twist) to be at the same angle as the air desires to enter and exits the blades of the fan 20. The inlet stator 18 conditions the air entering the fan 20 and the outlet stator 22 directs the air towards the passages of the radiator 12 of a cooling system. This system of stators and fan improves the amount of useful work done in the system.
While the present invention has been described in conjunction with a specific embodiment, it is understood that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, this invention is intended to embrace all such alternatives, modifications and variations which fall within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6142733 | Alizadeh et al. | Nov 2000 | A |
6905307 | Kawarada et al. | Jun 2005 | B2 |
20030138321 | Somahara et al. | Jul 2003 | A1 |
20070122271 | Ishihara et al. | May 2007 | A1 |
20080118379 | Uchise et al. | May 2008 | A1 |
20080193287 | Kobayashi et al. | Aug 2008 | A1 |
Entry |
---|
R.K. Turton. “Principles of Turbomachinery”. (Chapman & Hall, 1995). pp. 6-9. |
Number | Date | Country | |
---|---|---|---|
20120308373 A1 | Dec 2012 | US |