The invention relates to an axial fan for delivering cooling air, in particular for an internal combustion engine of a motor vehicle, as per the preamble of patent claim 1.
A generic axial fan is disclosed in the prior patent application of the applicant with the official file reference 2010 042 325.4. The axial fan has fan blades which are fastened to a hub ring and which, on their pressure side, have a hub ramp, and on their suction side, have air-guiding elements, also referred to as stabilizers, which serve for influencing the fan flow. The fan blades have in each case a leading edge, also referred to as flow impingement edge, and a trailing edge, also referred to as flow-off edge. The trailing edge of the fan blade has substantially two radially extending portions, specifically an outer portion arranged outside the hub ramp and an inner portion arranged within the hub ramp. The inner portion of the trailing edge is, for weight-saving reasons, angled inward, that is to say in the direction of the hub ring, so as to form a recess for the trailing edge and thus a reduction of the width of the fan blade. It has been found that, as a result of said recess of the trailing edge, a transverse flow and/or backflow of the fan blade flow occurs, which adversely affects the flow on the pressure side of the adjacent fan blade. Said backflow and/or transverse flow gives rise, in the region of the hub ramp, to a vortex structure which results in a decrease in efficiency.
EP 0 515 839 A1 discloses an axial fan having fan blades, on the pressure side of which is arranged a hub ramp which rises counter to the flow direction. The hub ramp in effect fills out the stagnant area in the region of the vane root and thus prevents a loss-afflicted vortex flow.
DE 199 29 978 B4 discloses an axial fan having fan blades, on the suction side of which are arranged air-guiding elements, and on the pressure side of which are arranged hub ramps. In this way, a flow duct is formed which effects stable guidance of the flow in the region of the vane root.
It is an object of the present invention, in the case of an axial fan of the type specified in the introduction, to improve the flow conditions and in particular prevent a loss-afflicted vortex formation.
The object of the invention is achieved by means of independent patent claim 1. Advantageous refinements emerge from the subclaims. According to the claim, the fan blade has a trailing edge with two portions, wherein a first, outer portion is situated radially outside the hub ramp and a second, inner portion is situated radially within the hub ramp. According to the invention, it is advantageous for the trailing edge to have, in the outer region radially outside the hub ramp, a profile which continues in substantially unchanging fashion radially inward across the radial position of the hub ramp into the inner region, and which, in the radially innermost region, runs toward the hub. This yields the inventive result that a stabilization of the fan blade flow is attained in the hub ramp region, that is to say a transverse flow and/or backflow around the trailing edge of the fan blade is at least reduced or is prevented. This leads to a significant increase in the efficiency of the fan and to a considerable increase in the volume flow delivered by the fan at the operating point of the fan. Furthermore, the specific sound pressure level is reduced.
Furthermore, it is advantageous for the radially innermost region to be the radially inner component of the radius of the radially inner region.
It is also advantageous for said component to be approximately one third, approximately one quarter or preferably less than approximately one fifth of the radius of the inner region of the trailing edge.
It can thus also be understood that three regions are present, the outer region and the inner region, wherein the inner region is itself in turn divided into a so-called intermediate region and the innermost region. According to the invention, therefore, it is advantageous for the trailing edge to have, in the outer region radially outside the hub ramp, a profile which continues in substantially unchanging fashion radially inward across the radial position of the hub ramp into the so-called intermediate region of the inner region, and which, in the radially innermost region, runs toward the hub. Here, said “running toward the hub” may mean curved or angled etc.
The fan blade advantageously also has substantially the same blade depth in the inner region as in the outer region, that is to say in particular the blade trailing edge merges substantially rectilinearly from the outer portion into the inner portion, such that overall, a straight trailing edge is formed as far as into the vane root region. Here, a certain curvature of the leading edge is not detrimental; for simplicity, however, said leading edge has been assumed in this examination as being straight, wherein a non-straight, curved leading edge would likewise be admissible.
In relation to the fan of the prior patent application, therefore, the blade depth and also the blade width in the region within the hub ramp have advantageously been increased.
The expressions “fan blade” and “fan vane” are used synonymously within the context of the present application. The expression “blade depth” is to be understood to mean the axial extent of the fan blade. The blade depth is the projection of the blade width in the circumferential direction, wherein the blade width is the spacing between the blade leading edge and blade trailing edge, measured in the direction of the chord.
In one preferred embodiment, the trailing edge, in the innermost region, is rounded. A reduced-stress transition of the blade trailing edge into the hub region is made possible in this way.
In a further preferred embodiment, the blade trailing edge, in its innermost region, merges—via a rounding—into the free edge of the hub ramp. An increase of the strength in the vane root region for the connection of the fan blade to the hub is attained in this way. Furthermore, a streamlined duct is formed between the suction side and the pressure side in the vane root and hub ramp region. The free edge of the hub ramp is to be understood to mean that edge of the hub ramp which faces away from the fan blade and which projects from the fan blade.
In a further preferred embodiment, stabilizers are arranged on the suction side of the fan blades, which stabilizers are preferably situated radially within the hub ramp. The downstream region of the stabilizer thus issues into the inner portion of the blade trailing edge. The stabilizers in conjunction with the hub ramps between the two vanes yield a further stabilization of the flow in the vane root region.
In a further preferred embodiment, the hub is in the form of a hub ring which has a significantly smaller axial extent than the fan blades. There is thus no longer a cylindrical hub in the classic sense. As mentioned above, the axial extent of the fan blades as represented by a projection of the blade width in the circumferential direction is referred to as the blade depth. The fan blades project both with their leading edges and also with their trailing edges beyond the end faces of the hub ring. In this respect, the trailing edge which runs rectilinearly as far as into the innermost region forms an axial projecting length of the fan blade with respect to the hub ring.
In a further preferred embodiment, the axial fan has a hub ratio Di/Da of greater than 42%, wherein the hub ratio is the quotient of hub diameter and outer diameter of the fan blades. The axial projecting length of the blade trailing edge in the inner region has a particularly advantageous effect in the case of fans with a relatively large hub ratio, because this has an adverse effect on the efficiency and on the volume flow rate delivered by the fan—in this respect, compensation is generated here. The relatively large hub ratio may arise here owing to a relatively small outer diameter if the fan blades are shortened owing to performance gradation.
In a further preferred embodiment, the axial fan is fixedly connected via its hub ring to a liquid friction clutch, which in turn is driven by the internal combustion engine and drives the fan with a regulated drive output rotational speed. In the case of relatively high power ratings, the diameter of the liquid friction clutch and thus the hub diameter increases, which may lead to a larger hub ratio.
The projecting blade length according to the invention, which leads to an increase in efficiency and in volume flow rate, has a particularly positive effect here.
In a further preferred embodiment, the fan blades are angled in the region of the blade root, whereby the form of a vane for the fan blade is defined. Advantages here are a low material accumulation in the region of the connection of fan blade and hub ring, and an increased strength.
Exemplary embodiments of the invention are illustrated in the drawing and will be described in more detail below, wherein further features and/or advantages may emerge from the description and/or from the drawing, in which:
In other words, the vane width of the fan blade 7 is increased in the radially inner region in relation to the vane width of the fan blade 1 according to the prior art, such that no recess is provided.
Said enlarged region is highlighted by a contour 7b illustrated in bold. The effect of the increased vane width in the region 7b is a prevention of the loss-afflicted transverse flow and/or backflow illustrated in
The expressions “vane width” or “blade width” are to be understood to mean the distance between the leading edge and trailing edge or the length of the chord of the vane or of the blade. The depth of the vane (blade depth) is to be understood to mean the projection of the vane width in the circumferential direction.
Further features and preferred embodiments will emerge from the applicant's prior patent application, mentioned in the introduction, with the official file reference 10 2010 042 325.4—said prior patent application is incorporated in its entirety into the content of disclosure of the present application. According to said document, it may be advantageous for the fan blades to be kinked in the direction of their blade roots and for the angled, inner region to be drawn downward onto the hub ring. The angled formation yields a vane-like form of the fan blade and a transition, which is optimized in terms of stresses, between the fan blade and hub ring.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 062 301.6 | Dec 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/071579 | 12/1/2011 | WO | 00 | 8/14/2013 |