Axial field rotary energy device having PCB stator and variable frequency drive

Information

  • Patent Grant
  • 11183896
  • Patent Number
    11,183,896
  • Date Filed
    Monday, January 11, 2021
    4 years ago
  • Date Issued
    Tuesday, November 23, 2021
    3 years ago
Abstract
An axial field rotary energy device or system includes an axis, a PCB stator and rotors having respective permanent magnets. The rotors rotate about the axis relative to the PCB stator. A variable frequency drive (VFD) having VFD components are coupled to the axial field rotary energy device. An enclosure contains the axial field rotary energy device and the VFD, such that the axial field rotary device and the VFD are integrated together within the enclosure. In addition, a cooling system is integrated with the enclosure to cool the axial field rotary energy device and the VFD.
Description
TECHNICAL FIELD

This disclosure relates in general to electric motors and, in particular, to a system, method and apparatus for an electric commutated motor (ECM) comprising an axial field rotary energy device with a printed circuit board (PCB) stator and a variable frequency drive (VFD).


BACKGROUND

Most permanent magnet (PM) motors are not designed to operate with a direct connection to an alternating current (AC) electrical source at 60 Hz or 50 Hz. Some PM motors can use a VFD to operate in this way. Typically, PM motors are connected to a separate VFD. In some cases, the motor and VFD are integrated in a common enclosure forming what is commonly referred as an ECM, or as a brushless direct current (BLDC) motor. Conventional ECM and BLDC motors are built in a traditional radial flux configuration with laminated electrical steel stators and pre-formed or randomly wound copper coils.


Axial flux PM electric motors that use printed circuit board (PCB) stator structures, such as those described in U.S. Pat. Nos. 10,141,803, 10,135,310, 10,340,760, 10,141,804 and 10,186,922 (which are incorporated herein by reference in their entirety), also can use a VFD to operate. Due to their substantially different aspect ratio (substantially short length as compared to diameter) compared to conventional radial flux PM motors, axial flux PM motors can be integrated with VFDs in ways not possible with conventional radial flux PM motors. Accordingly, improvements in axial flux ECM design continue to be of interest.


SUMMARY

Embodiments of an axial field rotary energy device or system are disclosed. For example, the system can include an axis, a PCB stator and rotors having respective permanent magnets (PM). The rotors can rotate about the axis relative to the PCB stator. Versions can include a variable frequency drive (VFD) comprising VFD components coupled to the axial field rotary energy device. An enclosure can contain the axial field rotary energy device and the VFD, such that the axial field rotary device and the VFD are integrated together within the enclosure. In addition, a cooling system can be integrated within the enclosure and configured to cool the axial field rotary energy device and the VFD.


The foregoing and other objects and advantages of these embodiments will be apparent to those of ordinary skill in the art in view of the following detailed description, taken in conjunction with the appended claims and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the features and advantages of the embodiments are attained and can be understood in more detail, a more particular description can be had by reference to the embodiments that are illustrated in the appended drawings. However, the drawings illustrate only some embodiments and are not to be considered limiting in scope since there can be other equally effective embodiments.


It shall be noted that some of the details and/or features shown in the drawings herein may not be drawn to scale for clarity purposes.



FIG. 1 is a schematic diagram of an embodiment of a system comprising an axial field rotary energy device and a VFD.



FIGS. 2A-2B are isometric views of embodiments of a VFD integrated system from the non-drive end and drive end, respectively, of its enclosure.



FIG. 3 is an isometric view of an embodiment of a VFD integrated system with a cover removed to show internal components thereof.



FIG. 4 is a schematic front view of an alternate embodiment of a VFD integrated system showing some of its components.



FIG. 5 is a sectional isometric view of an embodiment of a VFD integrated system with a device and VFD in separate enclosures.



FIGS. 6A-6D are schematic front views of alternate embodiments of a VFD enclosure showing VFD modules.



FIGS. 7A-7B are schematic views of embodiments of connections between VFD modules.



FIGS. 8A-8B are sectional views of embodiments of the VFD integrated system of FIG. 3 depicting first and second cooling air flow configurations.



FIG. 9 is a sectional view of an embodiment of the VFD integrated system of FIG. 5 depicting one cooling air flow configuration.



FIG. 10A-E are schematic views of embodiments of the VFD integrated system of FIG. 5 depicting alternate cooling configurations.



FIG. 11 is a sectional view of an embodiment of the VFD integrated system depicting a cooling air flow configuration.



FIG. 12 is a sectional view of an alternate embodiment of the VFD integrated system of FIG. 11 depicting an alternate cooling air flow configuration.



FIG. 13 is a simplified front view of an embodiment of an impeller for a VFD integrated system.



FIG. 14 is a partial isometric view of an embodiment of an enclosure for the VFD integrated system of FIG. 3.



FIG. 15 is a schematic isometric view of an embodiment of a VFD integrated system with an air duct inlet and outlet.



FIG. 16 is a schematic isometric view of an alternate embodiment of a VFD integrated system with an air duct inlet and outlet, and a heat exchanger.





The use of the same reference symbols in different drawings indicates similar or identical items.


DETAILED DESCRIPTION

This disclosure includes embodiments of systems comprising an axial field rotary energy device having a permanent magnet (PM), at least one printed circuit board (PCB) stator, a variable frequency drive (VFD), input and output (I/O) interfaces, and other components physically assembled, for example, in a common enclosure. Hereinafter, these systems can be referred to as a VFD integrated system, a motor-VFD assembly, etc. However, it should be understood that the axial field rotary energy device in these systems can operate as a motor or as a generator.



FIG. 1 shows a general schematic view of an embodiment of the VFD integrated system 100. In this diagram, a PM axial field rotary energy device 110 can be coupled to the inverter module 121 of a VFD 120 through line inductors 130. In some embodiments, the line inductors 130 can reduce ripple in the electric current supplied to the device 110. In other versions, the line inductors 130 can be absent, such that the axial field rotary energy device 110 can be connected directly to the inverter module 121 of the VFD 120. Although the example shown in FIG. 1 depicts a 3-phase motor connected to a 3-phase inverter, other phase arrangements are possible, such as 1, 2, 4, 5 or 6-phase devices, just to mention few options.


In FIG. 1, the VFD 120 can comprise a rectifier module 122, a DC bus module 123, an inverter module 121, and a control module 124. The rectifier module 122 can be, as an example, a full wave rectifier having passive devices, such as diodes, or active switching devices (e.g., IGBTs, MOSFETs, etc.) to convert the incoming alternating current (AC) to direct current (DC). The DC bus 123 can include a bank of capacitors sized to provide stable voltage to the inverter module 121. The inverter module can have, as an example, a 6-pulse 3-phase bridge, which can use active switching devices, such as IGBTs or MOSFETs, controlled by a pulse width modulation (PWM) scheme to convert DC to AC at the frequency required by the axial field rotary energy device 110. However, other inverter topologies can be used, such as 3-phase neutral point clamped (NPC) inverter. Although the input to the VFD 120 is typically AC at 60 or 50 Hz, the output frequency of the VFD 120 can range from, for example, a frequency near zero Hz, to a frequency in the hundreds or even thousands of Hz. In some embodiments, the power supplied to the VFD integrated system 100 can be DC, in which case, the rectifier module 122 can be absent. As an example, in embodiments where the PWM frequencies are high (e.g., above 100 kHz), the inverter module 122 can comprise wide band gap (WBG) devices such as silicon carbide or gallium nitride MOSFETs.


The VFD integrated system 100 depicted in FIG. 1 can include a control module 124 that provides and receives signals to and from the various modules of the VFD 120. These signals can be received from an external source, such as a digital signal, to turn the VFD on or off, or an analog voltage signal that can provide a speed reference to the system. These signals can control the output frequency of the VFD 120, and therefore the speed of the axial field rotary energy device 110. They also can control the current and voltage supplied by the VFD 120 to the axial field rotary energy device 110 to achieve desired torque characteristics, such as operating at a constant torque condition over a certain speed range. FIG. 1 depicts input and output connection pairs 125 and 126 between the control module 124 and the inverter 121 and rectifier 122, respectively. However, there can be more than one single input or output or, in some embodiments, input or output connections can be absent.


In some embodiments, the control module 124 also can be connected to the sensors in the axial field rotary energy device 100 via a separate set of input lines 127. The sensors can include, for example, resistance temperature detectors (RTD), thermocouples, vibration sensors, encoders, and/or other sensors for the VFD integrated system 100. In some embodiments, the sensors may transmit one or more measurements to the control module 124. The control module 124 may perform an operation in response to receiving and processing the one or more measurements. For example, a temperature sensor may transmit a measurement pertaining to temperature of the axial field rotary energy device 110 as it operates. If the temperature measurement is above a threshold temperature level, then the control module 124 may provide a signal to cause the axial field rotary energy device 110 to reduce its power, thereby reducing its temperature. In certain instances, based on a measurement from the sensors, the control module 124 may cause the axial field rotary energy device 110 to stop operating.


The control module 124 may include a memory device, a processing device, a communication interface device, or some combination thereof. For example, the memory device may store instructions that, when executed by the processing device, can cause the processing device to perform an operation, function, or the like. For example, the instructions may implement a control scheme for outputting signals to control the output frequency of the VFD 120.


The processing device may include one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processing device may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or a processor implementing other instruction sets or processors implementing a combination of instruction sets. The processing device may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a system on a chip, a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device is configured to execute instructions for performing any of the operations and steps discussed herein.


The memory device may include a main memory (e.g., read-only memory (ROM), flash memory, solid state drives (SSDs), dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM)), a static memory (e.g., flash memory, solid state drives (SSDs), static random access memory (SRAM)), etc.


The communication interface device may enable communicating data between the VFD modules transmitting and receiving analog and digital signals that command VFD voltage frequency outputs and communicate status of the VFD and axial field rotary energy device.


Some versions of the control module 124 may be connected to external systems through an input/output (I/O) module 140 that provide the connections between the VFD integrated system 100 and a supervisory control and data acquisition system (SCADA) or other control system. The I/O module 140 can have a configurable control interface 141 that can facilitate communication to an external control system by means of a set of input/output connections 142. Embodiments of the communication interface can include, but are not limited to, Ethernet and Industrial Ethernet (EtherCAT, EtherNet/IP, PROFINET, POWERLINK, SERCOS III, CC-Link IE, and Modbus TCP), RS485, wireless including WIFI, cellular, and Bluetooth.


The configurable control interface 141 also may have other digital and analog interfaces to connect the VFD integrated system 100 to the end user control system, such as a 0-10 V or a 4-20 mA analog ports. The control portion of the I/O module 141 may have additional connections implemented on, for example, a ‘daughter board’ mounted on top of a standard I/O board.


Embodiments of the I/O module 140 also can provide power connections 143 to connect the VFD integrated system 100 to an external power supply. As described herein, FIG. 1 depicts an embodiment of a VFD integrated system 100 connected to a 3-phase AC source. However, this system also can be connected to a single-phase source, to a multiphase source, or to a DC source. The I/O module 140 may have current and voltage sensors and other elements for the VFD integrated system, such as harmonic filters.


Some embodiments of the VFD integrated system 100 can have the power connection 143 directly connected to the rectifier module 122 of the VFD 120, thereby completely bypassing the I/O module 140.


Whereas FIG. 1 depicts a VFD integrated system 100 (e.g., with a motor), alternatively the system can be used as a generator-VFD system where the axial flux PCB stator PM machine 110 operates as a generator, and the VFD 120 provides the integration to the external grid. In this case, the rectifier module 122 of the VFD can have active switching devices such as IGBTs or MOSFETs, and the control module 124 can provide the signal to control the active rectifier by means of the communication ports 126, in some versions.



FIGS. 2A and 2B depict an embodiment of a system that can comprise the VFD integrated system 100 described in FIG. 1, and further include an enclosure 200. The enclosure 200 can contain the VFD integrated system 100 and can be relatively thin in the axial direction (e.g., along shaft 210). The enclosure 200 also can be substantially rectangular or square in shape when viewed axially. The enclosure 200 can be radially wider than its axial length. In one example, the enclosure 200 can be approximately 23 inches square (i.e., radially) and 3 inches long (i.e., axially). However, other sizes and aspect ratios are possible depending on the power and torque ratings of the device. For example, a ratio of the radial width to the axial length can be in a range of about 2:1 to about 10:1, or even about 15:1 or 20:1.



FIG. 2A shows the front side 230 of the enclosure 200, which can be the non-drive end of the axial field rotary energy device. In this image, the front bearing cover is removed to show the shaft 210. In some embodiments, the shaft 210 can have an extension that allows for mounting a second coupling or accessories, such as a cooling fan, a speed sensor, an encoder, etc. FIG. 2A also shows an example of a location for the I/O pass-throughs 220 that can correspond to the I/O connections 142 and 143 described in FIG. 1. In some embodiments, the I/O pass-throughs 220 can be located on one or more lateral sides 240 of the enclosure 200, or on the opposite side of the axial field rotary energy device, or can be located at more than one external portion of the enclosure 200 (e.g., one port on the front side 230 and other ports on one or more lateral sides 240. Whereas the embodiment shown in FIG. 2A has cooling fin blocks 205 on the four corners of the enclosure 200, other embodiments can have cooling fin blocks 205 on only one corner, two corners, or three corners depending on the cooling requirements for the VFD integrated system 100.



FIG. 2B depicts the back side of the VFD integrated system 100, which can be the drive end of the axial field rotary energy device. In this view, a coupling flange 250 is shown as an example. The axial field rotary energy device coupling can have different dimensions and features depending on the application and the type of driven equipment.



FIG. 3 shows an embodiment of the VFD integrated system 100 where the rectifier module, DC bus, inverter module, control module, I/O module, and line inductors form separate assemblies that are mounted around and substantially in the same plane of the axial field rotary energy device 110, all in a common enclosure 200. In this embodiment, the inverter and control modules are arranged in a printed circuit board assembly (PCBA) 128, and the rectifier and DC bus modules are arranged in another PCBA 129, whereas the I/O module 140 resides in its own PCBA. The line inductors 130 can form a separate assembly where they are interconnected by means of a PCB 135. Other modular arrangements are possible, such as having each module of the VFD on a separate PCBA, or all modules combined in one single PCBA, or any other combination thereof.


As an example, FIG. 4 shows an embodiment of the VFD integrated system 100 where the rectifier, DC bus, inverter and control modules of the VFD are all combined in one single PCBA 131. The I/O module 140 can reside on a separate PCBA. The line inductors 130 can form a separate assembly in the enclosure 200, and can be mounted in substantially the same plane as the axial flux PCB stator PM motor 110. Whereas FIGS. 3 and 4 show embodiments with six line inductors 130, it should be understood that other embodiments can have more than six line inductors, others can have less than six line inductors, and others yet can have no line inductors. In the embodiment of FIG. 3, the line inductors 130 are interconnected via a PCB to form an assembly with the PCBA 135. In other embodiments, however, the PCB 135 can be absent and the line inductors 130 can be interconnected with cables and/or wires.


In the embodiment of FIGS. 3 and 4, some of the I/O pass-throughs 220 are approximately aligned with the I/O module 140. Other pass-throughs are approximately aligned with the combined rectifier and DC bus module 129. Other embodiments may have the pass-through blocks placed in other locations.


Whereas FIGS. 3 and 4 show examples of embodiments where the VFD modules are mounted around and substantially in the same plane of the axial field rotary energy device. Other embodiments can have the VFD integrated system integrated in one assembly where the VFD modules are located in a plane substantially different from the plane where the axial field rotary energy device is.



FIG. 5 is a sectional view of an embodiment of the VFD integrated system 100. In this example, the VFD 120 is mounted in an enclosure 300 that is substantially aligned axially with the axial field rotary energy device 110. The VFD 120 is axially offset or in a different axial plane than the device 110.


The embodiment of FIG. 5 can have the VFD enclosure 300 attached to the axial field rotary energy device enclosure 200 with one or more brackets 310. The brackets 310 can provide spacing to accommodate a cooling fan 320 between the axial field rotary energy device enclosure 200 and the VFD enclosure 300. In some embodiments, a conduit 330 can provide a path for power cables, harnesses, etc., connecting the axial field rotary energy device to the VFD. Whereas FIG. 5 shows one conduit 330, other embodiments may have two or more conduits. As an example, an embodiment can have a first conduit for power cables and a second conduit for sensor cables. The enclosure 300 can have an access port, such as a removable lid 302, that can provide access to service the VFD.


The VFD integrated system embodiment of FIG. 5 can be provided, as an example, to provide an ingress protection rating of IP55, as per international standard EN 60529 for both the VFD enclosure 300 and the axial field rotary energy device enclosure 200. Other embodiments may have a different ingress protection rating, such as IP20, IP22, or any other protection rating as per standard EN60529 or its equivalent national standards. The separate VFD and PM axial field rotary energy device enclosure configuration shown in FIG. 5 can also allow for having different ingress protection ratings for the axial field rotary energy device enclosure and the VFD enclosure. Examples include IP55 for the VFD enclosure and IP44 for the axial field rotary energy device enclosure or any other combination thereof.



FIG. 5 depicts the VFD as housed in a separate enclosure 300. The VFD modules (e.g., rectifier, DC bus, inverter, control, I/O modules, line inductors, etc.) can be arranged in various configurations. FIG. 6A shows one embodiment of the VFD where the rectifier, DC bus, inverter, control, and I/O modules are combined as one single PCBA 132 inside the VFD enclosure 300 and the line inductors form a separate assembly 135.



FIG. 6B shows another embodiment where the rectifier, DC bus, inverter and control modules are combined as one PCBA 131, whereas the I/O module 140 has its own PCBA housed in a separate partition 301 of the enclosure 300. In this embodiment, the partition 301 can have its own access port separate from the VFD enclosure access port (e.g., lid 302 shown in FIG. 5), which can provide access to the I/O module 140 without exposing the other modules of the VFD.



FIG. 6C shows another embodiment where the inverter and control modules are combined as one PCBA 128, the rectifier and DC bus modules are combined as another PCBA 129, and the I/O module 140 has its own PCBA housed in a separate partition 301 of the enclosure 300. In this embodiment, the partition 301 can have its own access port separate from the VFD enclosure lid 302 shown in FIG. 5 to provide access to the I/O module 140 without exposing the other modules of the VFD.



FIG. 6D shows an alternate embodiment of the VFD integrated system shown in FIG. 6C, where the enclosure 300 can have a substantially flat face 300a adjacent to the partition 301 that provides a mounting surface to pass-throughs 220. In this example, the pass-through 220a can be used to bring power cables through the housing 300 to be connected to the rectifier PCBA 129, and the pass-throughs 220b can be used to bring signal I/O cables into partition 301 to be connected to the I/O module 140. The flat face 300a can also provide a mounting surface for an antenna 144 connected to the I/O module 140. The antenna 144 can provide connectivity to a wireless network thereby providing a wireless I/O to the VFD integrated system.


Whereas FIGS. 6A-6D show several embodiments of the VFD mounted in a separate enclosure 300, other arrangements are possible. As examples, the VFD may not have line inductors, or each module of the VFD can have its own separate PCBA.


Embodiments of the connection between the PCB stator and the PCB that interconnects the line inductors may be accomplished through a cable harness with electrical connectors on both ends. For example, FIG. 7A includes a line inductor 130 that forms an assembly with the PCB 135 which is connected to the PCB stator terminals 160 via a cable harness 170 with electrical connectors 180 on both ends. In some applications, however, it may be desired to have the cable harness permanently connected to either the stator PCB or the PCBA that interconnects the line inductors. FIG. 7B shows an embodiment of the latter, where the cable harness 160 is coupled to stator terminals 160 via an electrical connector 180 and connected to the inductor PCB 135 via a soldered connection 190. The connection can be a male-female connector that can be disconnected and re-connected without special tools. Permanent connections that cannot be easily undone, such as a soldered connection or a crimped connection, also can be used. Similarly, the connection between the output of the inverter module of the VFD and the PCBA that interconnects the line inductors can be accomplished, in one version, via a cable harness with connectors on both ends, or on one end only with the other end permanently connected to the inductor PCBA or the inverter module PCBA.


It should be understood that in those embodiments where the various modules of the VFD are mounted in separate PCBAs, the connection between the various modules also can be accomplished via cable harnesses with connectors on both ends of the cable harnesses. Alternatively, cables harnesses can be permanently connected on one end to a first PCBA and with a connector on the other end to connect to a second PCBA. For embodiments where the line inductors are absent, a cable harness can connect the output of the inverter to the PCB stator terminals. The harness may have connectors on both ends or on only one end. Furthermore, in some embodiments, the connections between various VFD modules, line inductors and stator PCB can be achieved by means of flexible PCBs soldered and/or coupled at each end.



FIG. 8A shows a sectional view of an embodiment of the VFD integrated system 100 of FIG. 3. The VFD 120 can be located around and substantially on the same plane as the axial field rotary energy device 110 in a common enclosure 200. In this embodiment, the axial field rotary energy device can have a first air circulator, such as a fan or impeller 315, mounted between the two discs 340 that comprise the rotor. As the rotor rotates, the first impeller 315 can generate a first air flow 350 that can enter the axial field rotary energy device through air intakes or ventilation openings 355 circumferentially distributed relatively to the shaft 210 on one or both ends of the enclosure 200. The air flow can circulate between the two discs 340 and radially over the surfaces of the PCB stator 115. The air flow can enter the volume 305 that houses the VFD 120, and ultimately can exit the enclosure 200 radially through peripheral openings 365, as shown in FIG. 8A.


In some embodiments, the first air flow 350 may exit the enclosure 200 radially at one or more of the four corners through openings in the cooling fin blocks 205 (FIG. 3). In other embodiments, the first air flow 350 may exit the enclosure 200 radially through other openings located in the periphery of the enclosure 200, axially through openings on one or both end faces of the enclosure 200, or a combination thereof.


In some embodiments, a second series of impellers 345 may be mounted on the back side of the rotor discs 340 as shown in FIG. 8A. As the rotor rotates, the second impellers 345 can generate a second air flow 360 that can enter the axial field rotary energy device through ventilation openings 355 on one or both ends of the enclosure 200. Ventilation openings 355 can be circumferentially distributed relatively to the shaft 210. The air flow can circulate between the discs 340 and the adjacent walls of the enclosure 200. The air flow can enter the volume 305 that houses the VFD 120, and can exit the enclosure 200 radially through peripheral openings 365, as shown in FIG. 8A.


In some embodiments, the second air flow 360 may exit the enclosure 200 radially at one or more of the four corners through openings in the cooling fin blocks 205 (FIG. 3). In other embodiments, the second air flow 360 may exit the enclosure 200 radially through other openings located in the periphery of the enclosure 200, axially through openings on one or both end faces of the enclosure 200, or a combination thereof.



FIG. 8B shows an alternate embodiment where the second air flow 360 generated by the impellers 345 can enter the enclosure 200 through a second set of ventilation openings 356 circumferentially distributed relative to the shaft 210 at a radius larger than the radius where the ventilation openings 355 are located. In some embodiments, the enclosure 200 can have air baffles 357 between the openings 355 and 356 to separate the first air flow 350 entering the enclosure 200 through ventilation openings 355 from the second air flow 360 entering the enclosure 200 through ventilation openings 356.



FIG. 9 shows an embodiment of FIG. 5, where the VFD 120 can be located in a different axial plane than that of the axial field rotary energy device. The axial field rotary energy device enclosure can have an ingress protection rating of IP55. In this embodiment, the axial field rotary energy device can have a first impeller 315 mounted between the two rotor discs 340 that comprise the rotor. As the rotor rotates, the first impeller 315 can generate a first air flow 350 that flows radially outward in the air gaps between the rotor discs 340 and the surfaces of the stationary PCB stator 115. The air flow can return radially toward the center of the rotor in the space between the rotor disks 340 and the inner walls of the enclosure 200, where it returns to the first impeller 315 through circumferentially distributed openings 370.


The embodiment shown in FIG. 9 can have a second impeller 320, which can comprise a cooling fan, coupled to the shaft 210 in the axial space between the axial field rotary energy device enclosure 200 and the VFD enclosure 300. The second impeller 320 can form a second airflow 360 that can radially enter the axial space between the axial field rotary energy device enclosure 200 and an air baffle 380, flowing around fins 390a attached to the axial field rotary energy device enclosure 200. The air flow can circulate radially outward between the external wall of the VFD enclosure 300 and the air baffle 380, while flowing around the fins 390b extending from the VFD enclosure 300, thereby helping to cool the components of the VFD 120.


Depending on the cooling needs of the VFD integrated system 100, other air circulation patterns are possible for the embodiment shown in FIG. 5. For example, this can be done by rearranging the cooling fan 320 and the air baffle 380. In another example, FIG. 10A shows an alternative air circulation pattern where the cooling fan 320 is located substantially near the axial field rotary energy device enclosure 200. In this version, cooling fan 320 can generate air flow that enters the space between the external radial wall of the VFD enclosure 300 and the air baffle 380, flowing over fins 390b extending from the VFD enclosure 300. The air flow can circulate radially outward between the external wall of the axial field rotary energy device enclosure 200 and the air baffle 380, flowing over fins 390a extending from the axial field rotary energy device enclosure 200.



FIG. 10B (and a reverse flow counterpart, FIG. 10E) show other examples of air circulation for the VFD integrated system 100 shown in FIG. 5. In this case, the air baffle 380 can extend substantially axially along and around the outer perimeter of the axial field rotary energy device enclosure 200, forming an air passage around the enclosure 200. The cooling fan 320 can be located substantially near the enclosure 200 and can generate an air flow 360 that can enter the space between the external wall of the VFD enclosure 300 and the air baffle 380 flowing over fins 390b. The air flow can circulate radially outward between the external wall of the enclosure 200 and the air baffle 380, and flow around fins 390a. Guided by the air baffle 380, the air flow can be directed substantially axially along the outer perimeter of the enclosure 200 in the space between the enclosure 200 and air baffle 380. This air flow can circulate around a second set of fins 390c extending from the periphery of the enclosure 200. The air flow can then exit at the drive end of the VFD integrated system 100.



FIG. 10C shows another example of air circulation for the VFD integrated system 100 of FIG. 5. The air baffle 380 can extend substantially axially along and around the outer perimeter of the VFD enclosure 300 to form an air passage around the VFD enclosure 300. The cooling fan 320 can be located substantially near the VFD enclosure 300 and generate an air flow 360 that enters the space between the external wall of the PM axial field rotary energy device enclosure 200 and the air baffle 380. The air can flow around fins 390a, then radially outward between the external wall of the VFD enclosure 300 and the air baffle 380, around a first set of fins 390b. The air flow can be guided by the air baffle 380, turn in a direction substantially axial, and flow axially along the outer perimeter of the VFD enclosure 300 in the space between the VFD enclosure 300 and the air baffle 380. The air flow can circulate around another set of fins 390d extending from the periphery of the VFD enclosure 300, and then exit at the non-drive end of VFD integrated system 100.



FIG. 10D shows another example of air circulation 360 in the VFD integrated assembly 100 of FIG. 5. The air baffle 380 can extend substantially axially along and around the outer perimeter of the enclosure 200 and VFD enclosure 300 to form air passages around both enclosures 200, 300. The cooling fan 320 can be located substantially near the VFD enclosure 300 and can generate air flow 360 to enter the space between the outer perimeter of the enclosure 200 and the air baffle 380. The air can flow around fins 390c and be guided by the air baffle 380. The air can flow radially inward between the enclosure 200 and the air baffle 380, flowing around fins 390a. The air can then flow radially outward between the VFD enclosure 300 and the air baffle 380, flowing around fins 390b. Guided by the air baffle 380, the air can turn to substantially axial flow along the outer perimeter of the VFD enclosure 300 in the space between the VFD enclosure and the air baffle 380. The air can flow around fins 390d and exit at the non-drive end of the VFD integrated system 100.



FIGS. 9 and 10A-10E depict several possible embodiments of air flows for the VFD integrated system 100. However, it should be understood that other embodiments of air circulation not described herein with different combinations of cooling fan location (e.g., substantially near the enclosures 200, 300), and air baffle geometry (e.g., extending axially along the enclosures 200, 300, or both) are possible. Although these examples include fins, it should be understood that some embodiments may have fins only on the enclosure 200 or 300, and variations where the fins are located only on the outer perimeter of the enclosures 200, 300 also are possible.


The examples in FIGS. 5, 9 and 10A-10D depict embodiments of the VFD integrated system 100 with enclosures that are consistent with ingress protection rating IP55. Other ingress protection ratings can be achieved, such as IP56 or IP65.



FIG. 11 shows an embodiment of the VFD integrated system 100 where the axial field rotary energy device 110 and the VFD 120 are substantially axially aligned, and located on different planes. They can be integrated in a common enclosure 200 with ingress protection rating IP20. The enclosure 200 can define at least two separate spaces. One space can contain the axial field rotary energy device 110 and the other space can contain the VFD 120. In some versions, the axial field rotary energy device 110 can have a first impeller 315 mounted between the two discs 340 that comprise the rotor. As the rotor rotates, the first impeller 315 can form a first air flow 350 that can enter the axial field rotary energy device 110 through ventilation openings 355a, which can be circumferentially distributed relatively to the shaft 210 on the drive end of the enclosure 200. The air can flow between the two discs 340 and radially over the surfaces of the PCB stator 115. The air flow can exit the enclosure 200 radially through peripheral openings 365. In some embodiments, a second impeller 320 can be included, such as mounted on a shaft extension. As the rotor rotates, the second impeller 320 can generate a second air flow 360 that can enter the enclosure 200 through a second set of ventilation openings 355b circumferentially distributed relatively to the shaft 210 on the non-drive end of the enclosure 200. The air can flow into the volume that houses the VFD 120, and can exit the enclosure 200 radially through peripheral openings 365.


In the alternate embodiment of FIG. 12, the first impeller 315 can generate a first air flow in two streams. The first stream 350a can enter the axial field rotary energy device 110 through ventilation openings 355a circumferentially distributed relatively to the shaft 210 on the drive end of the enclosure 200. The second stream 350b can enter the axial field rotary energy device 110 through ventilation opening 355b circumferentially distributed relative to the shaft 210 on the non-drive end of the enclosure 200. The two streams can merge at the first impeller 315, can flow between the two discs 340 and radially over the surfaces of the PCB stator 115, and can exit the enclosure 200 radially through peripheral openings 365. The second impeller 320 can have features to separate the second stream 350b of the first air flow from the second air flow 360, as the air flows enter the enclosure 200 through the ventilation openings 355b.



FIG. 13 show an embodiment of the second impeller 320 with some features. The second impeller 320 can have a hub 321 with an axial bore for mounting on the axial field rotary energy device shaft extension. The hub 321 can have a plurality of radial fins 322 that support a substantially cylindrical tube 323 that is coaxial with the hub 321. Tube 323 can support a plurality of radial fins or blades 324 that can propel the air radially as the impeller 320 rotates, thereby generating the second air flow 360 depicted in FIG. 12. The circumferential space between the hub 321 and the tube 323 can provide openings 325 for the second stream of the first air flow 350b to move axially from the enclosure openings 355b to the first impeller 315, as shown in FIG. 12.


Referring again to FIG. 12, the second airflow 360 generated by the blades 324 of the second impeller 320, can enter the enclosure 200 through ventilation openings 355b, which can be circumferentially distributed relatively to the shaft 210 on the non-drive end of the enclosure 200. The air can flow into the volume that houses the VFD 120, and can exit the enclosure 200 radially through peripheral openings 365.


These embodiments can have an ingress protection rating IP20. Other protection ratings, such as IP22, IP32, IP44 and still others, also can be achieved. For example, these embodiment can include screens and/or louvers adjacent the ventilation openings 355a and 355b.


The embodiments can have a second impeller 320, which can be mounted on a shaft extension. Other embodiments can have a fan powered by an electric motor attached to the enclosure 200. The fan can generate the air flow 360. Some embodiments may not include the second impeller 320 and the shaft extension.


In some embodiments, the impeller 320 depicted in FIG. 13 can have the radial fins 322 shaped to generate a substantially axial air flow. Alternatively, the radial blades 324 can be shaped as air foils to generate a substantially radial air flow, or a combination thereof.


The embodiments can include cooling fin blocks 205 (see, e.g., FIGS. 2-4 and 14) in one or more of the four corners of the enclosure. The cooling fin blocks 205 can have features to facilitate and or align their attachment, such as machined surfaces 207 (FIG. 14), and tapped holes 208 for fasteners. The embodiments can have cooling fin blocks 205 formed from modular blocks of thermally conductive metals, such as aluminum or copper. They can be extruded, cast or machined, for example. The cooling fin blocks 205 can have openings or slits 206 at their bases that can allow the air flow 350 generated by the rotor impellers to exit the enclosure 200. At least one of cooling fin blocks 205 can be removable, so other elements can be attached to the assembly to provide alternate cooling methods.


Other embodiments can have cooling fin blocks 205 with no slits 206 at the bases. When such blocks 205 are mounted to the enclosure 200, they can seal openings of the enclosure 200 at the corners. In such embodiments, the ventilation openings 355, 356 shown in FIGS. 8A and 8B, at both ends of the enclosure 200 may be absent. In such cases, the assembly can be totally enclosed, achieving an ingress protection rating IP55 or IP56. These versions can be desirable for applications where the assembly can be installed in a hazardous environment, such as a National Electric Code Class 1 Division 1 location, as an example.



FIG. 15 shows an embodiment where the enclosure 200 has an air inlet 410 on one side of the enclosure that allows cool air to enter the enclosure. A duct 420 can be attached to two of the enclosure corner openings, for example, to provide an air outlet 430. The air outlet 430 can direct the hot air coming from the assembly to a convenient location, such as the exterior of a building or an air plenum. In some embodiments, the other two corners of the enclosure 200 can be sealed with lids. Other variations of these embodiments can have air ducts connected to all four openings of the enclosure, three openings or just one. Some embodiments may have a combination of cooling fin blocks and air ducts, such as those mounted to the corners of the enclosure. Still other embodiments may have the air ducts connected to openings on the sides of the enclosure, not on the corners.



FIG. 16 shows another embodiment of a VFD integrated system where a first air duct 420 is attached to two corners of the enclosure 200. It can direct hot air into a heat exchanger 440. A second air duct 425 can direct the cold air coming from the heat exchanger 440 back to the enclosure. The two remaining corners can be sealed with lids, for example. In some embodiments, the heat exchanger 440 can be an air-to-air hear exchanger, a water-to-air heat exchanger, or may have any other suitable cooling fluid to cool the air circulating through the assembly. In some embodiments, another set of ducts may be mounted to one or more corners of the enclosure with, for example, a second heat exchanger connected to them. Other embodiments may have the air ducts connected to openings on the sides of the enclosure, not on the corners.


These embodiments can provide a flexible VFD integrated system having a structure and enclosure that allows for various combinations of cooling schemes and configurations. The examples provided just a small set of possibilities.


Other embodiments can include one or more of the following items.


1. A system, comprising:

  • an axial field rotary energy device having an axis, a printed circuit board (PCB) stator and rotors having respective permanent magnets (PM), and the rotors are configured to rotate about the axis relative to the PCB stator;
  • a variable frequency drive (VFD) comprising VFD components coupled to the axial field rotary energy device;
  • an enclosure containing the axial field rotary energy device and the VFD, such that the axial field rotary device and the VFD are integrated together within the enclosure; and
  • a cooling system integrated within the enclosure and configured to cool the axial field rotary energy device and the VFD.


2. The system wherein the cooling system comprises an impeller configured to cool the system.


3. The system wherein the enclosure comprises an axial length, a radial width relative to the axis that is greater than the axial length, and the enclosure is substantially rectangular in shape when viewed axially.


4. The system wherein a ratio of the radial width to the axial length is in a range of about 2:1 to about 20:1, and the enclosure is substantially square in shape when viewed axially.


5. The system wherein, relative to the axis, the VFD components are mounted around and substantially co-planar with the axial field rotary energy device.


6. The system wherein the VFD components comprise a rectifier module, direct current (DC) bus, inverter module, control module and input/output (I/O) module.


7. The system wherein the VFD components comprise line inductors.


8. The system wherein the inverter module comprises wide band gap switching devices.


9. The system wherein the rectifier module and DC bus comprise a first printed circuit board assembly (PCBA), the inverter module and control module comprise a second PCBA, the I/O module comprises a third PCBA.


10. The system wherein the VFD components comprise line inductors as a separate assembly from the first, second and third PCBAs.


11. The system wherein the I/O module comprises a daughter PCBA configured to perform customized communication functions, and the daughter PCBA is removably coupled to the third PCBA.


12. The system wherein the rectifier module, DC bus, inverter module, and control module comprise a first printed circuit board assembly (PCBA), and the I/O module comprises a second PCBA.


13. The system wherein the I/O module comprises a daughter PCBA configured to perform customized communication functions, and the daughter PCBA is removably coupled to the second PCBA.


14. The system wherein the rectifier module, DC bus, inverter module, control module and I/O module comprise a common printed circuit board assembly (PCBA).


15. The system wherein the I/O module comprises a daughter PCBA configured to perform customized communication functions, and the daughter PCBA is removably coupled to the common PCBA.


16. The system wherein the enclosure comprises respective housings for the axial field rotary energy device and VFD.


17. The system wherein the housings are substantially axially aligned and coupled to each other.


18. The system wherein the housings are axially spaced apart by an axial space, a cooling device is located in the axial space, and the VFD housing comprises an access port configured to provide access to the VFD.


19. The system wherein the cooling device comprises a first impeller located between the rotors and configured to circulate a first air flow within the housing for the axial field rotary energy device, and a second impeller located in the axial space between the housings and configured to circulate radial air flow into and out of the axial space adjacent the VFD.


20. The system wherein each housing comprises fins extending into the axial space between the housings.


21. The system wherein a cooling device comprises an impeller and a baffle configured to circulate an air flow that, relative to the axis, radially enters and exits the axial space between the housings.


22. The system wherein the air baffle comprises an axial component that extends in an axial direction along and around an exterior of the enclosure to define axial air passages between the axial component and the enclosure, the air baffle also having a radial component that extends in a radial direction in the axial space between the housings to define radial air passages between the radial component and the housings.


23. The system wherein the cooling device is configured to circulate air flow that radially enters a first set of the radial air passages, flows through a second set of radial air passages, and the air flow axially exits via the axial air passages.


24. The system wherein the cooling device is configured to circulate air flow that axially enters the axial air passages, flows through all radial air passages, and the air flow radially exits the system.


25. The system wherein the cooling device is configured to circulate air flow that axially enters a first set of the axial air passages, flows through the radial air passages, and the air flow axially exits a second set of axial air passages.


The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.


When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.


Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” “top”, “bottom,” and the like, may be used herein for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.


This written description uses examples to disclose the embodiments, including the best mode, and also to enable those of ordinary skill in the art to make and use the invention. The patentable scope is defined by the claims, and can include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.


In the foregoing specification, the concepts have been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of invention.


It can be advantageous to set forth definitions of certain words and phrases used throughout this patent document. The term “communicate,” as well as derivatives thereof, encompasses both direct and indirect communication. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The phrase “associated with,” as well as derivatives thereof, can mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, have a relationship to or with, or the like. The phrase “at least one of,” when used with a list of items, means that different combinations of one or more of the listed items can be used, and only one item in the list can be needed. For example, “at least one of: A, B, and C” includes any of the following combinations: A, B, C, A and B, A and C, B and C, and A and B and C.


Moreover, various functions described herein can be implemented or supported by one or more computer programs, each of which is formed from computer readable program code and embodied in a computer readable medium. The terms “application” and “program” refer to one or more computer programs, software components, sets of instructions, procedures, functions, objects, classes, instances, related data, or a portion thereof adapted for implementation in a suitable computer readable program code. The phrase “computer readable program code” includes any type of computer code, including source code, object code, and executable code. The phrase “computer readable medium” includes any type of medium capable of being accessed by a computer, such as read only memory (ROM), random access memory (RAM), a hard disk drive, a compact disc (CD), a digital video disc (DVD), solid state drive (SSD), or any other type of memory. A “non-transitory” computer readable medium excludes wired, wireless, optical, or other communication links that transport transitory electrical or other signals. A non-transitory computer readable medium includes media where data can be permanently stored and media where data can be stored and later overwritten, such as a rewritable optical disc or an erasable memory device.


Also, the use of “a” or “an” is employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it states otherwise.


The description in the present application should not be read as implying that any particular element, step, or function is an essential or critical element that must be included in the claim scope. The scope of patented subject matter is defined only by the allowed claims. Moreover, none of the claims invokes 35 U.S.C. § 112(f) with respect to any of the appended claims or claim elements unless the exact words “means for” or “step for” are explicitly used in the particular claim, followed by a participle phrase identifying a function.


Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that can cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, sacrosanct or an essential feature of any or all the claims.


After reading the specification, skilled artisans will appreciate that certain features which are, for clarity, described herein in the context of separate embodiments, can also be provided in combination in a single embodiment. Conversely, various features that are, for brevity, described in the context of a single embodiment, can also be provided separately or in any subcombination. Further, references to values stated in ranges include each and every value within that range.

Claims
  • 1. A system, comprising: an axial field rotary energy device having an axis, a printed circuit board (PCB) stator and rotors having respective permanent magnets (PM), and the rotors are configured to rotate about the axis relative to the PCB stator;a variable frequency drive (VFD) comprising VFD components coupled to the axial field rotary energy device;an enclosure containing the axial field rotary energy device and the VFD, such that the axial field rotary device and the VFD are integrated together within the enclosure, wherein the enclosure comprises respective housings for the axial field rotary energy device and VFD, the housings are substantially axially aligned and coupled to each other, the housings are axially spaced apart by an axial space, and the VFD housing comprises an access port configured to provide access to the VFD;a cooling system integrated within the enclosure and configured to cool the axial field rotary energy device and the VFD; andthe cooling system comprises a cooling device that is located in the axial space, the cooling device has a first impeller located between the rotors that is configured to circulate a first air flow within the housing for the axial field rotary energy device, and a second impeller located in the axial space between the housings and configured to circulate radial air flow into and out of the axial space adjacent the VFD.
  • 2. The system of claim 1, wherein the enclosure comprises an axial length, a radial width relative to the axis that is greater than the axial length, and the enclosure is substantially rectangular in shape when viewed radially.
  • 3. The system of claim 2, wherein a ratio of the radial width to the axial length is in a range of about 2:1 to about 20:1, and the enclosure is substantially square in shape when viewed radially.
  • 4. The system of claim 1, wherein the VFD components comprise a rectifier module, direct current (DC) bus, inverter module, control module and input/output (I/O) module.
  • 5. The system of claim 4, wherein the VFD components comprise line inductors.
  • 6. The system of claim 4, wherein the inverter module comprises wide band gap switching devices.
  • 7. The system of claim 4, wherein the rectifier module and DC bus comprise a first printed circuit board assembly (PCBA), the inverter module and control module comprise a second PCBA, the I/O module comprises a third PCBA.
  • 8. The system of claim 7, wherein the VFD components comprise line inductors as a separate assembly from the first, second and third PCBAs.
  • 9. The system of claim 7, wherein the I/O module comprises a daughter PCBA configured to perform customized communication functions, and the daughter PCBA is removably coupled to the third PCBA.
  • 10. The system of claim 4, wherein the rectifier module, DC bus, inverter module, and control module comprise a first printed circuit board assembly (PCBA), and the I/O module comprises a second PCBA.
  • 11. The system of claim 10, wherein the I/O module comprises a daughter PCBA configured to perform customized communication functions, and the daughter PCBA is removably coupled to the second PCBA.
  • 12. The system of claim 4, wherein the rectifier module, DC bus, inverter module, control module and I/O module comprise a common printed circuit board assembly (PCBA).
  • 13. The system of claim 12, wherein the I/O module comprises a daughter PCBA configured to perform customized communication functions, and the daughter PCBA is removably coupled to the common PCBA.
  • 14. The system of claim 1, wherein each housing comprises fins extending into the axial space between the housings.
  • 15. The system of claim 14, wherein the cooling device comprises a baffle configured to circulate an air flow that, relative to the axis, radially enters and exits the axial space between the housings.
  • 16. The system of claim 15, wherein the baffle comprises an axial component that extends in an axial direction along and around an exterior of the enclosure to define axial air passages between the axial component and the enclosure, the air baffle also having a radial component that extends in a radial direction in the axial space between the housings to define radial air passages between the radial component and the housings.
  • 17. The system of claim 16, wherein the cooling device is configured to circulate air flow that radially enters a first set of the radial air passages, flows through a second set of radial air passages, and the air flow axially exits via the axial air passages.
  • 18. The system of claim 16, wherein the cooling device is configured to circulate air flow that axially enters the axial air passages, flows through all radial air passages, and the air flow radially exits the system.
  • 19. The system of claim 16, wherein the cooling device is configured to circulate air flow that axially enters a first set of the axial air passages, flows through the radial air passages, and the air flow axially exits a second set of axial air passages.
  • 20. A system, comprising: an axial field rotary energy device having an axis, a printed circuit board (PCB) stator and rotors having respective permanent magnets (PM), and the rotors are configured to rotate about the axis relative to the PCB stator;a variable frequency drive (VFD) comprising VFD components coupled to the axial field rotary energy device;an enclosure containing the axial field rotary energy device and the VFD, such that the axial field rotary device and the VFD are integrated together within the enclosure, wherein the enclosure comprises respective housings for the axial field rotary energy device and VFD, each housing comprises fins extending into an axial space between the housings;a cooling system integrated within the enclosure and configured to cool the axial field rotary energy device and the VFD;the cooling system comprises a cooling device that is located in the axial space, the cooling device comprises a baffle configured to circulate an air flow that, relative to the axis, radially enters and exits the axial space between the housings; andthe baffle comprises an axial component that extends in an axial direction along and around an exterior of the enclosure to define axial air passages between the axial component and the enclosure, the air baffle also having a radial component that extends in a radial direction in the axial space between the housings to define radial air passages between the radial component and the housings.
  • 21. The system of claim 20, wherein the cooling device is configured to circulate air flow that radially enters a first set of the radial air passages, flows through a second set of radial air passages, and the air flow axially exits via the axial air passages.
  • 22. The system of claim 20, wherein the cooling device is configured to circulate air flow that axially enters the axial air passages, flows through all radial air passages, and the air flow radially exits the system.
  • 23. The system of claim 20, wherein the cooling device is configured to circulate air flow that axially enters a first set of the axial air passages, flows through the radial air passages, and the air flow axially exits a second set of axial air passages.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 16/999,837, filed Aug. 21, 2020, which claims priority to and the benefit of U.S. Prov. App. No. 62/960,974, filed Jan. 14, 2020. The contents of these two applications are incorporated herein by reference in their entirety.

US Referenced Citations (232)
Number Name Date Kind
3230406 Henry-Baudot Jan 1966 A
3944857 Faulhaber Mar 1976 A
4578608 Mech et al. Mar 1986 A
4707645 Miyao et al. Nov 1987 A
4760294 Hansen Jul 1988 A
4982130 Cap et al. Jan 1991 A
5021698 Pullen et al. Jun 1991 A
5099162 Sawada Mar 1992 A
5176509 Schmider et al. Jan 1993 A
5177388 Hotta Jan 1993 A
5334899 Skybyk Aug 1994 A
5349276 Mezzatesta et al. Sep 1994 A
5392176 Anderson Feb 1995 A
5644183 Van Loenen et al. Jan 1997 A
5666011 Hong Sep 1997 A
5789841 Wang Aug 1998 A
5887145 Harari et al. Mar 1999 A
5969909 Cheong Oct 1999 A
5982074 Smith et al. Nov 1999 A
6005324 Kim Dec 1999 A
6031738 Lipo et al. Feb 2000 A
6348751 Jermakian et al. Feb 2002 B1
6369470 Kylander et al. Apr 2002 B1
6411002 Smith et al. Jun 2002 B1
6664673 Lopatinsky et al. Dec 2003 B2
6700252 Fleshman et al. Mar 2004 B2
6707221 Carl Mar 2004 B2
6713911 Yamaguchi Mar 2004 B2
6787965 Horng et al. Sep 2004 B1
6836039 Choi et al. Dec 2004 B2
6909215 Bryant Jun 2005 B2
6923619 Fedoseyev et al. Aug 2005 B2
6998751 Lopatinsky et al. Feb 2006 B2
7036205 Fukushima et al. May 2006 B2
7081698 Burkholder et al. Jul 2006 B1
7109625 Jore et al. Sep 2006 B1
7112910 Lopatinsky et al. Sep 2006 B2
7165413 Symons Jan 2007 B2
7282828 Takeuchi Oct 2007 B2
7291956 Itoh Nov 2007 B2
7375449 Butterfield May 2008 B2
7402934 Gabrys Jul 2008 B1
7573173 Frownfelter Aug 2009 B1
7608964 Yamagiwa Oct 2009 B2
7663269 Laughlin Feb 2010 B2
7663279 Tsai et al. Feb 2010 B2
7741804 Fridhendler et al. Jun 2010 B2
7800274 Yamaguchi et al. Sep 2010 B2
7888834 Tsai et al. Feb 2011 B2
8035267 Suzuki et al. Oct 2011 B2
8115361 Iki et al. Feb 2012 B2
8148870 Iki et al. Apr 2012 B2
8193678 Horng et al. Jun 2012 B2
8193781 Lin et al. Jun 2012 B2
8362751 Lin et al. Jan 2013 B2
8382450 Ida et al. Feb 2013 B2
8384261 Kinpara et al. Feb 2013 B2
8536747 Baggett Sep 2013 B1
8558425 Stahlhut et al. Oct 2013 B2
8624463 Schmidt Jan 2014 B2
8736133 Smith et al. May 2014 B1
8785784 Duford et al. Jul 2014 B1
8823241 Jore et al. Sep 2014 B2
9019731 Tong et al. Apr 2015 B2
9154024 Jore et al. Oct 2015 B2
9240733 Royak et al. Jan 2016 B2
9287739 Ashe et al. Mar 2016 B2
9407117 Rimai et al. Aug 2016 B2
9431875 Keogh et al. Aug 2016 B2
9509198 Jahshan Nov 2016 B2
9570945 Fischer Feb 2017 B2
9583982 Ashe et al. Feb 2017 B2
9595857 Cawhtorne et al. Mar 2017 B2
9673684 Shaw Jun 2017 B2
9673688 Shaw Jun 2017 B2
9762099 Jore et al. Sep 2017 B2
9800109 Shaw Oct 2017 B2
9859763 Shaw Jan 2018 B2
10135310 Schuler et al. Nov 2018 B2
10141803 Schuler et al. Nov 2018 B2
10141804 Schuler et al. Nov 2018 B2
10170953 Shaw Jan 2019 B2
10186922 Schuler et al. Jan 2019 B2
10211694 Shaw Feb 2019 B1
10256690 Shaw Apr 2019 B2
10263485 Koenen et al. Apr 2019 B2
10340760 Schuler et al. Jul 2019 B2
10393840 Feiweier Aug 2019 B2
10461612 Gloss Oct 2019 B2
10511201 Kim et al. Dec 2019 B2
10718339 Patton et al. Jul 2020 B2
10727712 Schuler et al. Jul 2020 B2
10748689 Kim et al. Aug 2020 B2
10778071 Kim et al. Sep 2020 B2
10804789 Hsu et al. Oct 2020 B2
10826418 Frampton et al. Nov 2020 B2
10837494 Haak et al. Nov 2020 B2
10855129 Lenius et al. Dec 2020 B1
10896271 Baudart et al. Jan 2021 B1
10910903 Witczak et al. Feb 2021 B2
10931175 Gassend et al. Feb 2021 B2
20030020353 Lopatinsky et al. Jan 2003 A1
20030042570 Hanks Mar 2003 A1
20030067234 White et al. Apr 2003 A1
20040108789 Marshall Jun 2004 A1
20040245878 Kim et al. Dec 2004 A1
20050218746 Fukasaku et al. Oct 2005 A1
20060022543 Takeuchi Feb 2006 A1
20060055265 Zalusky Mar 2006 A1
20060202584 Jore et al. Sep 2006 A1
20060202854 Jore et al. Sep 2006 A1
20070048158 Kochan Mar 2007 A1
20070296369 Yeh Dec 2007 A1
20080017402 Huang et al. Jan 2008 A1
20080018187 Yamaguchi et al. Jan 2008 A1
20080042515 Butterfield Feb 2008 A1
20080100166 Stahlhut et al. May 2008 A1
20080101966 Lopatinsky et al. May 2008 A1
20080272666 Halstead Nov 2008 A1
20080278010 Ishikawa et al. Nov 2008 A1
20090051317 Fridhendler et al. Feb 2009 A1
20090109624 Chan et al. Apr 2009 A1
20090140600 Tsai et al. Jun 2009 A1
20090200890 Halstead Aug 2009 A1
20100090553 Ritchey Apr 2010 A1
20100119385 Hanaoka et al. May 2010 A1
20100145401 Nishiguchi et al. Jun 2010 A1
20100156401 Nishiguchi et al. Jun 2010 A1
20100253170 Bi et al. Oct 2010 A1
20100277025 Doi et al. Nov 2010 A1
20100283252 Fradella Nov 2010 A1
20100314974 Horng et al. Dec 2010 A1
20110057536 Horng et al. Mar 2011 A1
20110140558 Kinpara et al. Jun 2011 A1
20110253310 Benjamin Oct 2011 A1
20110273048 Jore et al. Nov 2011 A1
20110291511 Crocker Dec 2011 A1
20120001523 Lordo Jan 2012 A1
20120133223 Liu et al. May 2012 A1
20120169154 Curodeau Jul 2012 A1
20120228972 Moya et al. Sep 2012 A1
20120235523 Moya et al. Sep 2012 A1
20120235530 Moya et al. Sep 2012 A1
20120256422 Fradella Oct 2012 A1
20120256585 Partovi et al. Oct 2012 A1
20130049500 Shan et al. Feb 2013 A1
20130076192 Tanimoto Feb 2013 A1
20130066194 Seter et al. Mar 2013 A1
20130069473 Miyata et al. Mar 2013 A1
20130307356 Tanimoto Nov 2013 A1
20130307366 Naginsky et al. Nov 2013 A1
20130315692 Hsiung Nov 2013 A1
20140042842 Tokoi et al. Feb 2014 A1
20140175914 Zeng et al. Jun 2014 A1
20140175922 Jore et al. Jun 2014 A1
20140197768 Haugen et al. Jul 2014 A1
20140210285 Fahimi Jul 2014 A1
20140265664 Camilleri et al. Sep 2014 A1
20140265748 Clendenen et al. Sep 2014 A1
20140306565 James Oct 2014 A1
20140319949 Langreck Oct 2014 A1
20150015102 Wong et al. Jan 2015 A1
20150048713 Caamano et al. Feb 2015 A1
20150076929 Elenga et al. Mar 2015 A1
20150084446 Atar Mar 2015 A1
20150111752 Guina et al. Apr 2015 A1
20150214801 Libault Jul 2015 A1
20150244213 Tsai et al. Aug 2015 A1
20150262610 Lin et al. Sep 2015 A1
20150318751 Smith et al. Nov 2015 A1
20150318772 Jahshan Nov 2015 A1
20150349609 Tremelling et al. Dec 2015 A1
20150369216 Kisovec Dec 2015 A1
20160036308 Bailey et al. Feb 2016 A1
20160069352 Kreidler et al. Mar 2016 A1
20160072359 Kreidler et al. Mar 2016 A1
20160079824 McKinzie et al. Mar 2016 A1
20160105065 Takahashi Apr 2016 A1
20160126794 Gery et al. May 2016 A1
20160163445 Bertels Jun 2016 A1
20160197569 Lamprecht Jul 2016 A1
20160218577 Chen et al. Jul 2016 A1
20160233751 Theuret Aug 2016 A1
20160285323 Lin et al. Sep 2016 A1
20160301275 Head et al. Oct 2016 A1
20160315510 Kawamata et al. Oct 2016 A1
20160322884 Perriere Nov 2016 A1
20160329796 Hano et al. Nov 2016 A1
20160336824 Duan et al. Nov 2016 A1
20160336835 Bickers et al. Nov 2016 A1
20160336836 Bickers et al. Nov 2016 A1
20160341202 Chai et al. Nov 2016 A1
20170047792 Klassen et al. Feb 2017 A1
20170047793 Klassen et al. Feb 2017 A1
20170067470 Patton et al. Mar 2017 A1
20170098973 Shaw Apr 2017 A1
20170098982 Shaw Apr 2017 A1
20170155291 Deak et al. Jun 2017 A1
20170155347 Park et al. Jun 2017 A1
20170159656 Tientcheu-Yamdeu Jun 2017 A1
20170194823 Tokoi et al. Jul 2017 A1
20170229949 Na et al. Aug 2017 A1
20170264171 Williams Sep 2017 A1
20170264220 Rattan et al. Sep 2017 A1
20170317558 Steg et al. Nov 2017 A1
20170338760 Gibbs et al. Nov 2017 A1
20180019646 Quick et al. Jan 2018 A1
20180080573 Bourqui Mar 2018 A1
20180175691 Koenen et al. Jun 2018 A1
20180219445 Jore et al. Aug 2018 A1
20180254685 Seki Sep 2018 A1
20180323689 Schuler Nov 2018 A1
20180331632 Wang et al. Nov 2018 A1
20180351441 Milheim Dec 2018 A1
20190074746 Schuler et al. Mar 2019 A1
20190109504 Schuler Apr 2019 A1
20190226495 Kanai Jul 2019 A1
20190260325 Tian Aug 2019 A1
20190273429 Li Sep 2019 A1
20190393749 Park et al. Dec 2019 A1
20200067361 Shaw et al. Feb 2020 A1
20200128671 Xiang et al. Apr 2020 A1
20200146174 Song et al. May 2020 A1
20200177034 Beyerl et al. Jun 2020 A1
20200204025 Schuler et al. Jun 2020 A9
20200220406 Schuler et al. Jul 2020 A1
20200280233 Dehez et al. Sep 2020 A1
20200303982 Richardson Sep 2020 A1
20200313520 Quick et al. Oct 2020 A1
20200381970 Dehez et al. Dec 2020 A1
20200389080 Haase et al. Dec 2020 A1
20210050767 Yen et al. Feb 2021 A1
Foreign Referenced Citations (64)
Number Date Country
2016329080 Sep 2016 AU
1675815 Sep 2005 CN
101861693 Oct 2010 CN
203377758 Jan 2014 CN
103930024 Jul 2014 CN
105490476 Apr 2016 CN
105720717 Jun 2016 CN
105896760 Aug 2016 CN
106374643 Feb 2017 CN
107534381 Jan 2018 CN
108119539 Jun 2018 CN
109072929 Dec 2018 CN
110100372 Aug 2019 CN
111010008 Apr 2020 CN
112003405 Nov 2020 CN
112292800 Jan 2021 CN
109995153 Feb 2021 CN
112368913 Feb 2021 CN
109219916 Mar 2021 CN
2863524 Apr 2015 EP
3034763 Jun 2016 EP
3104504 Dec 2016 EP
3785356 Mar 2020 EP
2878064 Nov 2020 EP
3243258 Nov 2020 EP
3754813 Dec 2020 EP
3446396 Feb 2021 EP
1317092 May 1973 GB
2338117 Dec 1999 GB
2485185 May 2012 GB
S6253146 Mar 1987 JP
H06311682 Nov 1994 JP
H0865935 Mar 1996 JP
H10248224 Sep 1998 JP
11313465 Nov 1999 JP
2004088969 Mar 2004 JP
2004088997 Mar 2004 JP
2004096872 Mar 2004 JP
2005502291 Jan 2005 JP
2005521378 Jul 2005 JP
2006066527 Mar 2006 JP
2009001917 Dec 2008 JP
2010130818 Jun 2010 JP
2010172094 Aug 2010 JP
2010528581 Aug 2010 JP
4996712 Aug 2012 JP
2012161135 Aug 2012 JP
2013051880 Mar 2013 JP
2015136201 Jul 2015 JP
2021507664 Feb 2021 JP
2007114079 Nov 2007 WO
2014164334 Oct 2014 WO
2016021852 Feb 2016 WO
2016034570 Mar 2016 WO
2016127207 Aug 2016 WO
2016169332 Oct 2016 WO
2016185216 Nov 2016 WO
2016185218 Nov 2016 WO
2017032501 Mar 2017 WO
2017088082 Jun 2017 WO
2017208675 Dec 2017 WO
2018132469 Jul 2018 WO
2019121037 Jun 2019 WO
2020092470 May 2020 WO
Non-Patent Literature Citations (17)
Entry
International Search Report and Written Opinion of the International Searching Authority for PCT Patent Application No. PCT/US18/13145 dated Mar. 15, 2018; 8 pages.
International Search Report and Written Opinion of the International Searching Authority for PCT Patent Application No. PCT/US18/13154 dated Mar. 16, 2018; 8 pages.
International Search Report and Written Opinion of the International Searching Authority for PCT Patent Application No. PCT/US18/13162 dated Mar. 23, 2018; 7 pages.
International Search Report and Written Opinion of the International Searching Authority for PCT Patent Application No. PCT/US18/13167 dated May 4, 2018; 8 pages.
Office Action for U.S. Appl. No. 15/864,544 dated Apr. 19, 2018; 19 pages.
Office Action for U.S. Appl. No. 15/864,604 dated May 31, 2018; 16 pages.
Office Action for U.S. Appl. No. 15/864,663 dated May 16, 2018; 15 pages.
Office Action for U.S. Appl. No. 15/864,709 dated Apr. 12, 2018; 23 pages.
Japanese Patent Office, Notice of Reasons for Rejection dated Jan. 29, 2020 in Japanese Patent Application No. 2019-538400, 12 pages.
Japanese Patent Office, Notice of Reasons for Rejection dated Feb. 4, 2020 in Japanese Patent Application No. 2019-538321, 16 pages.
The International Searching Authority, Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority dated Oct. 23, 2019 in International Application No. PCT/US2019/041114, 11 pages.
China National Intellectual Property Administration, China Office Action in related CN Patent App. No. 201880006674.9, dated Mar. 10, 2020, 6 pages.
Japanese Patent Office, Notice of Reasons for Rejection dated Feb. 10, 2020 in Japanese Patent Application No. 2019-544059, 10 pages.
The International Searching Authority, Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority dated Feb. 19, 2021 in lntemational Application No. PCT/US2020/059680, 11 pages.
International Searching Authority, Search Report and Written opinion in related PCT/US2019/023828, dated Jun. 14, 2019, 10 pages.
International Search Report and Written Opinion of the International Searching Authority for PCT Patent Application No. PCT/US21/13187 dated Jun. 11, 2021; 12 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority dated Mar. 26, 2021, in International Application Nl. PCT/US21/12954, 11 pages.
Related Publications (1)
Number Date Country
20210135526 A1 May 2021 US
Provisional Applications (1)
Number Date Country
62960974 Jan 2020 US
Continuations (1)
Number Date Country
Parent 16999837 Aug 2020 US
Child 17145675 US