This application claims priority to German Patent Application DE10 2006 015 838.5 filed Apr. 3, 2006, the entirety of which is incorporated by reference herein.
This invention relates to an axial-flow compressor, more particularly, to a high-pressure compressor, an intermediate-pressure compressor or a low-pressure compressor for a gas turbine engine having a rotor drum driven by the turbine, with rotor blades disposed on an outer circumference of the rotor drum in the respective compressor stage, which are followed by stator vanes.
An axial-flow compressor includes one or several rotors comprising rotor blades arranged on the circumference of a shaft driven by the turbine and of a stator vane row downstream of the rotor in each compressor stage. In a compressor having several stages—each formed by a row of rotating blades and a row of stationary vanes—the individual rotors are combined to a drum, for example by welding. Except for the so-called “blisk”, in which the blades are integrally formed onto the rotor shaft, the rotor blades are usually fixed in a common, circumferential slot on the circumference of the rotor shaft or in individual, axially disposed adjacent slots. The rotor blades, rotating at high speed and arranged on a hollow rotor shaft and, thus, at a certain distance from the center axis of the compressor, are subject to high centrifugal forces. The loading of the blades by centrifugal forces is counteracted by the disk-type construction of the rotor shaft whose major mass share is situated near the compressor axis. A suite of rotor disks is combined, on the periphery, to the above mentioned drum, preferably by welding.
The arrangement of the rotor disks required for the compensation of the centrifugal load is a major disadvantage of such a compressor as these disks significantly contribute to the total weight of the compressor, and ultimately of the engine, and also consume considerable installation space unavailable for other purposes. Finally, the material and manufacturing investment and, thus, the cost required by the rotor disks is high.
A broad aspect of the present invention is to provide a rotor for the compressor of a gas turbine engine, which, while featuring low weight, is producible with reduced cost effort.
It is a particular object of the present invention to provide a solution to the above problems by a rotor designed in accordance with the features described herein. Advantageous developments of the present invention will be apparent from the description below.
The present invention, in its essence, provides a design of the rotor or the rotor drum, respectively, with the rotor blades carried thereon, in the form of a rotor ring, dispensing with the conventional, space-consuming, heavy and costly rotor disks. Several rotor rings can be combined to a rotor drum by welding, threaded connection, other connection or can also form a one-piece rotor drum. To compensate the high centrifugal loads, fiber belts are wound onto the rotor ring or the rotor drum, respectively, which include carbon fibers enveloped by a high-temperature resistant polymer matrix, with the term high temperature here being understood as the respective component temperature occurring.
The space so gained in the interior of the rotor drum can favorably be used for the installation of a generator or other auxiliary equipment.
In a development of the present invention, the polymer matrix includes an epoxy resin which includes ester cyanide or polybisma-imide or polyamide-imide or another high-temperature resistant resin which at the same time prevents corrosion of the carbon fibers.
The fiber belts, which can be used with rotor blades carried in axial slots or in an annular slot as well as with rotor blades integrally formed onto the rotor ring or the rotor drum, respectively, are wound into a belt location groove provided beneath the axial slots or in a deepened annular slot or—in the case of integrally formed-on rotor blades—near the blade neck onto the rotor ring or into a groove provided in the rotor ring.
In the case of rotor blades fixed in axial slots or in an annular slot, additional fiber belts can be wound onto the rotor ring near the blade neck.
An extension provided with a location surface can be formed onto the inner surface of the rotor drum or the rotor ring, respectively, beneath the blade fixation. Further fiber belts can be wound onto this location surface.
In a further development of the present invention, an additional fiber belt can also be wound onto the area of the rotor drum downstream of the rotor blade row where the stator vanes of the compressor are situated. The belts for compensating the centrifugal forces can here also serve as a seal towards the stator vanes.
The carbon fibers—upon wetting with the polymer matrix—are wound onto the outer surface or into the grooves, respectively. They may also be wound in dry condition, in which case a polymer is subsequently infiltrated into the wound material. The polymer matrix materials can be both duromers and thermoplastics.
On a compressor for an engine, the fiber belts are preferably provided in the first four compressor stages, where the polymer matrix of the fiber belts is resistant to the temperatures occurring there. Upon availability of matrix materials resistant to higher temperatures, this type of construction may also be extended to other stages. In a further development of the present invention, the fibers have gradually increasing elasticity over the height of the fiber belt towards the rotor drum, to optimally compensate the forces and stresses occurring.
A higher polymer content near the rotor surface serves to compensate the forces exerted on the fibers by thermal expansion during the operation of the rotor drum. However, the fibers can also be wound onto a heated rotor drum and/or under reduced pre-load.
For “health monitoring”, i.e. monitoring the condition of the rotor, piezo fibers can be integrated into the fiber belt which are connected to a sensor for resistance measurement.
An example of the present invention is more fully described in light of the accompanying drawing.
Different fiber belt reinforcement embodiments are illustrated in the drawing, showing one and the same rotor drum 2 driven by a turbine and rotating around a center axis 1 in four stages of a compressor, however without stator vane rows being shown, the rotor drum 2 here being a hypothetical configuration for four different blade arrangements.
The individual compressor stages 3 to 6 of the rotor drum 2, each comprising a forged rotor ring 7 to 10 with rotor blades 11 to 14 disposed on its circumference, can be joined by a weld 15, here only shown between the rotor rings 9 and 10. However, as shown in the drawing, several rotor rings may preferably be forged in one piece to dispense with costly and failure-prone threaded connections or welded joints and increase the service life of the rotor drum 2 so made.
In a first embodiment, the rotor blades 11 of the first compressor stage 3 are each fixed in axial slots 16 provided on the circumference of the rotor ring 7. Beneath the axial slots 16, a circumferential belt location groove 17 is provided in the rotor ring 7 accommodating a fiber belt 18 consisting of carbon fibers embedded in high-temperature polymer.
In a second embodiment, the rotor ring 8 and the rotor blade 12 in the second compressor stage 4 form a one-piece rotor integrally manufactured like a blisk. In this example, fiber belts 18 are provided on the rotor ring 8 on either side of the blade root of the rotor blades 12 which can be wound directly onto the rotor ring 8 or into a circumferential groove of the rotor ring 8.
In the third embodiment of a rotor of the third compressor stage 5, a deepened annular slot 19 is provided in the rotor ring 9 which holds the blade root 13a of the rotor blade 13 and additionally accommodates in its bottom part, actually beneath the blade root 13a, a circumferential fiber belt 18 of carbon fibers embedded in a polymer matrix.
In a fourth embodiment of a rotor in the fourth compressor stage 6, the rotor ring 10 is again provided with a deepened annular slot 19 as per the third embodiment, but additionally includes fiber belts 18 applied to a Tee-shaped extension 20. In addition, further fiber belts 18 are applied to the rotor ring 10 as per the second embodiment.
A fifth embodiment is shown in those parts of the rotor drum 2 which are downstream of the rotor blades 11 and 12 and in which the stator vane rows (not shown) of the first and second compressor stage are situated. In this area of the rotor drum 2, i.e. the rotor rings 7/8 and 8/9, a further fiber belt 21 is arranged either flush or slightly protruding beyond the circumferential surface which may additionally serve as abradable seal between the rotor drum 2 and the stator vane tip edge. In addition, the fiber belts 21 may also be provided as slip rings and used for information transfer.
The fiber belts 18, 21 include carbon fibers which are applied into the belt location grooves 17 or the deepened annular slots 19 and/or onto the rotor rings 7 to 10 in a winding process and which—in agreement with the temperature occurring in the first four stages of a high-pressure compressor—are embedded in a polymer matrix with a heat resistance of up to 350° centigrade, here ester cyanide. The carbon fibers can be wound-on in wet condition—after wetting with polymer—or dry, with the polymer being infiltrated into the winding material after winding. In the case of a high-pressure compressor for a gas turbine engine, application of the fiber belts is restricted to the first stages where the temperatures occurring do not exceed the maximum permissible thermal loadability of the polymer matrix. It is intended that the invention include the use of polymer matrices having a resistance of greater than 350° C., when appropriate such polymers become available.
The fiber belts 18 are disposed in the area of the blade root, i.e. at the origin of forces and maximum stresses. The forces can immediately be taken up by the fiber belts—without the usually necessary disks.
With the stress input being larger on the inner side of the rotor rings 7 to 10 or the rotor drum 2, respectively, a gradual fiber built-up is applied for the reinforcing belts 18, 21 to account for the mechanical properties. This means, for example, that the carbon fibers will be applied with gradually increasing elasticity inwards, to the smaller winding radius, or gradually increasing stiffness outwards, to the larger winding radius, to compensate differences in stress input.
Thermal expansion of the metallic rotor rings 7 to 10 or the rotor drum 2, respectively, occurring during compressor operation is taken into account in the design of the reinforcing belts 18, 21 in that the fibers are wound either under reduced pre-load or onto a heated rotor drum. Furthermore, a first—soft—winding layer acting as compensator for the thermal expansion of the metallic rotor rings may be applied using a high thermoplastic content. Thus, the strength potential of the metallic rotor ring can be employed, and the stresses occurring need not be taken up at full by the fiber-material reinforcing belt.
In connection with the so-called “health monitoring”, piezo fibers connected to a sensor (not shown) can be wound into the fiber belts 18, 21. A resistance change of the piezo fibers under elastic elongation detected by the sensor enables the integrity of the rotor rings to be monitored.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 015 838 | Apr 2006 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3515501 | Palfreyman et al. | Jun 1970 | A |
3610772 | Wagle | Oct 1971 | A |
3610777 | Wagle | Oct 1971 | A |
3625634 | Stedfeld | Dec 1971 | A |
3813185 | Bouiller | May 1974 | A |
3966523 | Jakobsen et al. | Jun 1976 | A |
4191510 | Teysseyre et al. | Mar 1980 | A |
4397609 | Kochendorfer | Aug 1983 | A |
5400505 | Wei et al. | Mar 1995 | A |
5632600 | Hull | May 1997 | A |
6213720 | Farmer | Apr 2001 | B1 |
6250883 | Robinson | Jun 2001 | B1 |
6991433 | Mons | Jan 2006 | B2 |
7011490 | Albrecht | Mar 2006 | B2 |
7334999 | Aumont et al. | Feb 2008 | B2 |
20050254950 | Mons | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
497641 | Nov 1970 | CH |
30 37 388 | Jun 1982 | DE |
27 39 702 | May 1987 | DE |
43 24 755 | Sep 1994 | DE |
102 18 459 | Apr 2002 | DE |
103 50 974 | Jun 2005 | DE |
I 406 019 | Apr 2004 | EP |
2 143 561 | Feb 1973 | FR |
1 173 834 | Dec 1969 | GB |
1 296 310 | Nov 1972 | GB |
Number | Date | Country | |
---|---|---|---|
20070231144 A1 | Oct 2007 | US |