Field of the Invention
The present invention relates to an axial flow compressor, a gas turbine including the same, and a stator blade of an axial flow compressor.
Background Art
In axial flow compressors, a rotor blade row and a stator blade row are formed of multiple rotor blades and multiple stator blades which are arranged in a circumferential direction of an annular channel through which a working fluid flows, and one stage consists of one set of a rotor blade row and a stator blade row. The axial flow compressors include multiple stages.
In recent years, the axial flow compressors have needed higher loading which compatibly satisfies a higher pressure ratio and cost saving achieved by reducing the number of stages. In a subsonic airfoil of a high loaded compressor, secondary flow increases due to a developed boundary layer on a wall surface (endwall on one end side of a blade row) on an inner peripheral side or an outer peripheral side of an annular channel where the blade is located. Consequently, pressure loss may increase due to flow stall (corner stall) in a corner portion formed between a blade surface and the wall surface of the channel. Therefore, in order to develop a high performance and high loaded compressor, it is an important task to create a high performance airfoil and channel wall surface contour capable of restraining the corner stall.
For example, as a stator blade of a compressor which can improve both efficiency and a stall margin of the compressor at the same time while flow separation is avoided in the vicinity of a channel wall surface (endwall on one end side of a blade row), JP-A-2001-132696 discloses a technology in which a chord length of a radial span central portion (waist) of a stator blade is set to be shorter than that of a blade tip or a blade hub, and in which a trailing edge of the blade is bowed.
Incidentally, in a case where an outlet flow angle in an upstream blade row is non-uniform in a blade height direction (radial direction) (for example, in a case where an outlet flow angle in the vicinity of the channel wall surface is larger than an outlet flow angle in a blade height central portion) or in a case where a leakage flow from a downstream side of a blade row flows into an annular channel on the upstream side of the blade row, a boundary layer in the vicinity of the endwall on one end side of the blade row is influenced. JP-A-2001-132696 described above does not mention the influences of this non-uniformity of the outlet flow angle of the upstream blade row or the flow leakage. It is understood that JP-A-2001-132696 does not sufficiently consider these influences. That is, in the compressor including the stator blade disclosed in JP-A-2001-132696, if a flow direction of the boundary layer in the vicinity of the endwall on one end side of the stator blade row is greatly distorted (deviated) from a flow direction of a main stream due to the influences of the non-uniform outlet flow angle at the upstream blade row or the leakage flow, there is a possibility that the corner stall cannot be avoided.
In addition, even in a case where the boundary layer on the channel wall surface at an inlet of the blade row is thick due to a certain factor, similarly to the above-described case where the outlet flow angle at the upstream blade row is non-uniform or the above-described case where the leakage flow occurs, there is a possibility that the flow of the boundary layer on the endwall on one end side of the blade row is greatly distorted from the main stream. Accordingly, there is a possibility that the corner stall cannot be avoided.
This flow separation or stall causes an unsteady flow induced vibration such as buffeting, surging, and the like. Consequently, there is a possibility of poor reliability of the compressor. Furthermore, the influence of the flow separation is not limited to the blade on which the flow separation occurs. That is, the flow separation causes an inlet flow angle with respect to the downstream blade to be non-uniform in the blade height direction. Consequently, there is also a possibility that pressure loss may increase in a subsequent blade row or that reliability of the compressor may become poor. In this case, the possibility results in serious inefficiency or poor reliability of the overall compressor.
In addition, even if the corner stall can be avoided, when the outlet flow angle at an outlet of the blade row is brought into a non-uniform state, the inlet flow angle with respect to the downstream blade row inevitably becomes non-uniform. In this case, there is also the possibility that pressure loss may increase in the subsequent blade row or that reliability of the compressor may become poor.
The present invention is made in order to solve the above-described problems, and an object thereof is to provide an axial flow compressor, a gas turbine including the same, and a stator blade of an axial flow compressor, which can achieve improved efficiency and ensured reliability of an overall compressor by restraining corner stall of a blade and optimizing an inflow condition for a subsequent blade row at the same time.
In order to solve the above-described problems, for example, the present invention adopts configurations disclosed in the scope of Claims.
Although the present application includes multiple means for solving the above-described problems, an example will be described as follows. There is provided an axial flow compressor including multiple rotor blade rows configured to include multiple rotor blades and multiple stator blade rows configured to include multiple stator blades, the multiple rotor blades and the multiple stator blades being arranged in an annular channel through which a working fluid flows. A portion of at least one wall surface on an inner peripheral side and an outer peripheral side of the annular channel, the portion being at an arrangement portion where at least any one blade row of the rotor blade rows and the stator blade rows is located, has a protruding portion such that downstream side part of the portion is curved so as to further protrude to the annular channel than upstream side part of the portion. Each blade of the blade row located at the protruding portion of the wall surface is configured such that an increase rate in a wall surface direction of a blade outlet angle in a blade end portion on the side of the wall surface having the protruding portion is greater than an increase rate in the wall surface direction of a blade outlet angle in a blade height intermediate portion.
According to the present invention, the downstream side of the portion of the wall surface of the annular channel where at least any one blade row of the rotor blade rows and the stator blade rows is located further protrudes to the annular channel than the upstream side of the portion. Accordingly, development of a boundary layer on the wall surface of the channel is locally restrained. Therefore, it is possible to restrain flow separation (corner stall) in a corner portion formed between a blade surface and the wall surface of the channel. Furthermore, the increase rate in the wall surface direction of the blade outlet angle in the blade end portion on the side of the wall surface having the protruding portion is set to be greater than the increase rate of the blade outlet angle in the blade height intermediate portion. Accordingly, it is possible to restrain an outlet flow angle of flow at an outlet of the blade row from being excessively decreased due to the protruding portion of the channel wall surface. Therefore, it is possible to optimize an inflow condition for a subsequent blade row. As a result, it is possible to realize improved efficiency and ensured reliability of the overall compressor.
An object, configuration, and advantageous effect in addition to those described above will be apparent from the description of the following embodiments.
Hereinafter, an axial flow compressor, a gas turbine including the same, and a stator blade of an axial flow compressor according to embodiments of the present invention will be described with reference to the drawings. Herein, an example will be described in which the present invention is applied to the axial flow compressor of the gas turbine. However, for example, the present invention is also applicable to an axial flow compressor for industries.
[First Embodiment]
First, a configuration of an axial flow compressor, a gas turbine including the same, and a stator blade of an axial flow compressor according to a first embodiment of the present invention will be described with reference to
In
In
For example, each of the stator blades of the stator blade row 14 is configured to include a blade section 17 which is supported by the casing 13 in a cantilever manner and has an airfoil-shaped cross-section, and a blade tip shroud 18 disposed in an inner peripheral end of the blade section 17. The blade tip shrouds 18 of the stator blades adjacent in the circumferential direction are connected to each other, and the connected blade tip shrouds in the overall stator blade row 14 are formed in an annular shape. The connected blade tip shrouds 18 having the annular shape are arranged in the groove portion 15a of the inner peripheral casing 15. In order to allow relative deviation between the casing 13 and the inner peripheral casing 15 when the axial flow compressor 1 is actuated, a gap G is disposed between the blade tip shroud 18 and a bottom surface or a side surface partitioning the groove portion 15a of the inner peripheral casing 15.
The rotor blade rows 12 and the stator blade rows 14 are arranged inside an annular channel P through which the working fluid flows. A wall surface on an outer peripheral side of the annular channel P is mainly configured to include an inner peripheral surface 20 of the casing 13. Apart of a wall surface on an inner peripheral side of the annular channel P is configured to include an outer peripheral surface 21 of an arrangement portion of the rotor blade row 12 in the rotor 11, an outer peripheral surface 22 of the inner peripheral casing 15, and outer peripheral surfaces 23 of the blade tip shrouds 18. That is, wall surfaces (endwalls) located on the inner peripheral end side and the outer peripheral end side of the rotor blade rows 12 and the stator blade rows 14 are part of the wall surfaces on the inner peripheral side and the outer peripheral side of the annular channel P. The annular channel P on the downstream side from the stator blade row 14 and the annular channel P on the upstream side from the stator blade row 14 communicate with each other through the gap G.
Next, a detailed structure of the stator blade row and the wall surface on one end side of the stator blade row configuring a part of the axial flow compressor and the gas turbine including the same according to the first embodiment of the present invention and will be described with reference to
As illustrated in
As illustrated in
In addition, as illustrated in
Referring back to
The outer peripheral surface 23 of the blade tip shroud 18 of the stator blade row 14, that is, the wall surface on the inner peripheral side of the stator blade row 14 in the annular channel P has a protruding portion 24 such that downstream side part of the outer peripheral surface 23 is curved so as to further protrude to the annular channel P as much as δ than upstream side part of the outer peripheral surface 23. The protruding portion 24 is uniformly formed in the circumferential direction. In other words, a meridional channel height Ht of the annular channel P at an outlet (trailing edge 32) of the stator blade row 14 is set so as to further decrease as much as δ than the meridional channel height H1 at the inlet of the stator blade row 14. A specific configuration of the outer peripheral surface 23 of the blade tip shroud 18 includes a first cylindrical surface 25 which is located on substantially the same plane as the outer peripheral surface 22 on the upstream side from the groove portion 15a of the inner peripheral casing 15, a first curved surface 26 which is smoothly connected to the first cylindrical surface 25 while being located on the downstream side of the first cylindrical surface 25 and which has a shape convex to the outside of the annular channel P, a second curved surface 27 which is smoothly connected to the first curved surface 26 while being located on the downstream side of the first curved surface 26 and which has a shape convex to the inside of the annular channel P, an inflection point 28 between the first curved surface 26 and the second curved surface 27, and a second cylindrical surface 29 which is smoothly connected to the second curved surface 27 while being located on the downstream side of the second curved surface 27. The second cylindrical surface 29 is located on the outer side in the radial direction as much as δ from the first cylindrical surface 25. For example, a ratio of the position of the inflection point 28 in the axial direction from the leading edge 31 is approximately 50% with respect to the axial chord length Cx.
Next, a flow of the working fluid in the axial flow compressor and the gas turbine including the same according to the first embodiment of the present invention will be schematically described with reference to
Air serving as the working fluid is suctioned and compressed by the axial flow compressor 1 of the gas turbine illustrated in
The working fluid suctioned into the axial flow compressor 1 illustrated in
Next, an operation and an advantageous effect of the axial flow compressor, the gas turbine including the same, and the stator blade of the axial flow compressor according to the first embodiment of the present invention will be described with reference to a comparison with a reference blade in the related art.
First, a configuration and an operation of the reference blade in the related art as a comparative example with respect to the axial flow compressor, the gas turbine including the same, and the stator blade of the axial flow compressor according to the first embodiment of the present invention will be described with reference to
As illustrated in
When the working fluid flows in the meridional channel P illustrated in
When the leakage flow merges with the main stream, the flowing direction of the boundary layer in the vicinity of the inner peripheral endwall of the meridional channel P is changed, and a low speed region of the boundary layer is spread. Accordingly, the boundary layer becomes greatly non-uniform. In a case of the reference blade 100 illustrated in
That is, as illustrated in
At the same time, as illustrated in
In this way, in the case of the reference blade 100 in the related art, due to the influence of the leakage flow from the downstream side to the upstream side of the reference blade 100 via the gap G, the flow separation region is formed in the downstream region on the side of the suction surface 113 of the blade section 101, thereby increasing the loss. Furthermore, due to the blockage of the formed flow separation region, the outlet flow angle θ of the working fluid at the outlet of the blade row increases in the vicinity of the inner peripheral endwall. Therefore, the inlet flow angle increases with respect to the subsequent blade row of the blade row in which the flow separation occurs, thereby increasing the risk that pressure loss increase or flow separation may occur in the subsequent blade row.
Next, an operation and an advantageous effect of the axial flow compressor, the gas turbine including the same, and the stator blade of the axial flow compressor according to the first embodiment of the present invention will be described with reference to
In the present embodiment, as illustrated in
In addition, the deceleration of the flow in the downstream side portion of the stator blade row 14 is further relieved by protruding the downstream side part of the inner peripheral endwall of the stator blade row 14, compared to the case of the reference blade 100. Accordingly, as illustrated in
The restrained development of the backflow vortex E2 decreases a blockage effect, and the protruding inner peripheral side wall surface of the meridional channel P further increase the flow velocity in the axial direction, compared to the case of the reference blade 100. In this manner, an outlet flow T2 at the outlet of the stator blade row 14 is further oriented to the axial direction A, compared to the case of the reference blade 100. In the present embodiment, as illustrated in
In addition, in the present embodiment, as illustrated in
Furthermore, in the present embodiment, a ratio of the position of the inflection point 28 in the axial direction from the leading edge 31 is approximately 50% with respect to the axial chord length Cx. The reason is considered that the flow separation region in the reference blade 100 (refer to
Furthermore, in the present embodiment, as illustrated in
In this way, in the present embodiment, the downstream portion of the wall surface on the inner peripheral side of the stator blade row 14 protrudes in the annular channel P, the axial chord length Cx extends in the inner peripheral side end portion and the outer peripheral side end portion of the blade section 17, and the blade outlet angle in the vicinity of the inner peripheral endwall is increased than the blade outlet angle in the blade height intermediate portion. In this manner, the flow separation (corner stall) is restrained in the downstream side region of the suction surface 33 of the blade section 17. Therefore, as illustrated in
Furthermore, in the present embodiment, as illustrated in
As described above, according to the axial flow compressor, the gas turbine including the same, and the stator blade of the axial flow compressor according to the first embodiment of the present invention, the downstream side part of the outer peripheral surface 23 (wall surface on the inner peripheral side of the stator blade row 14 in the annular channel P) of the blade tip shroud 18 of the stator blade row 14 further protrudes to the annular channel P than the upstream side portion of the outer peripheral surface 23. In this manner, the development of the boundary layer is locally restrained on the outer peripheral surface 23 of the blade tip shroud 18. Accordingly, it is possible to restrain the corner stall. Furthermore, the increase rate in the inner peripheral end direction of the blade outlet angle in the inner peripheral side end portion of the blade section 17 of the stator blade is set to be greater than that in the blade height intermediate portion of the blade section 17. In this manner, the outlet flow angle at the outlet of the stator blade row 14 is restrained from being excessively decreased due to the protruding outer peripheral surface 23. Accordingly, it is possible to optimize the inlet condition for the subsequent blade row. As a result, it is possible to realize improved efficiency of the overall compressor and ensured reliability of the compressor 1.
In addition, according to the present embodiment, the protruding portion 24 of the inner peripheral side wall surface (outer peripheral surface 23 of the blade tip shroud 18) of the annular channel P is uniformly formed in the circumferential direction of the annular channel P. Accordingly, a member (blade tip shroud 18) configuring the wall surface of the annular channel P is easily manufactured.
[Modification of First Embodiment]
Next, an axial flow compressor and a gas turbine including the same according to a modification of the first embodiment of the present invention will be described with reference to
In the axial flow compressor and the gas turbine including the same according to the modification example of the first embodiment of the present invention which is illustrated in
Specifically, an arrangement portion of the stator blade row 14A on an inner peripheral surface 20A of a casing 13A, that is, the wall surface on the outer peripheral side of the stator blade row 14A in the annular channel P has a protruding portion 44 such that downstream side part of the arrangement portion on the inner peripheral surface 20A of the casing 13A is curved so as to further protrude to the annular channel P as much as δ than upstream side part. In other words, a meridional channel height Ht of the annular channel P at an outlet (trailing edge 32) of the stator blade row 14A is set to be further decreased as much as δ than a meridional channel height H1 at an inlet (leading edge 31) of the stator blade row 14A. A specific configuration of the arrangement portion of the stator blade row 14A on the inner peripheral surface 20A of the casing 13A includes a first cylindrical surface 45 which is smoothly connected to the inner peripheral surface 20A of the casing 13A on the upstream side from the stator blade row 14A, a first curved surface 46 which is smoothly connected to the first cylindrical surface 45 while being located on the downstream side of the first cylindrical surface 45 and which has a shape convex to the outside of the annular channel P, a second curved surface 47 which is smoothly connected to the first curved surface 46 while being located on the downstream side of the first curved surface 46 and which has a shape convex to the inside of the annular channel P, an inflection point 48 between the first curved surface 46 and the second curved surface 47, and a second cylindrical surface 49 which is smoothly connected to the second curved surface 47 while being located on the downstream side of the second curved surface 47. The second cylindrical surface 49 is located on the inner side in the radial direction as much as δ from the first cylindrical surface 45. It is preferable that a position of the inflection point 48 in the axial direction from the leading edge 31 is at a ratio approximately from 40% to 60% with respect to the axial chord length Cx. On the other hand, in a blade tip shroud 18A of the stator blade row 14A, an outer peripheral surface 23A thereof is formed into a cylindrical surface, and does not protrude to the annular channel P.
In addition, as illustrated in
In the present embodiment, the downstream side part of the wall surface on the outer peripheral side of the stator blade row 14A in the annular channel P further protrudes to the annular channel P than the upstream side part. Accordingly, the deceleration of the flow is locally relieved in the downstream side portion on the outer peripheral side end portion of the stator blade row 14A where the corner stall is likely to occur. Therefore, the development of the boundary layer is restrained on the outer peripheral endwall of the stator blade row 14A. As a result, the corner stall can be restrained.
In addition, in the present embodiment, the increase rate in the outer peripheral end direction of the blade outlet angle in the outer peripheral side end portion of the blade section 17A is greater than that in the blade height intermediate portion of the blade section 17A. Accordingly, it is possible to restrain the outlet flow angle at the outlet of the stator blade row 14A from being excessively decreased due to the protruding outer peripheral side end wall surface of the annular channel P. Therefore, it is possible to optimize the inflow condition for the subsequent blade row (including a diffuser downstream of the final stage) of the stator blade row 14A.
According to the axial flow compressor and the gas turbine including the same according to the above-described modification of the first embodiment of present invention, it is possible to obtain an advantageous effect which is the same as that according to the above-described first embodiment.
[Second Embodiment]
Next, an axial flow compressor, a gas turbine including the same, and a stator blade of an axial flow compressor according to a second embodiment of the present invention will be described with reference to
In the axial flow compressor, the gas turbine including the same, and the stator blade of the axial flow compressor according to the second embodiment of the present invention which is illustrated in
In the present embodiment, the protruding portion 24B on the outer peripheral surface 23B locally relieves the deceleration of the flow in the downstream side portion on the side of the suction surface 33 of the blade section 17 of the stator blade row 14B where the corner stall is likely to occur. This restrains the development of the boundary layer on the outer peripheral surface 23B (inner peripheral endwall of the stator blade row 14B). As a result, it is possible to avoid the corner stall.
On the other hand, the protruding portion is not formed in regions other than the downstream side portion on the side of the suction surface 33 of the blade section 17, thereby decreasing the portion protruding to the annular channel P. Accordingly, it is possible to further increase an outlet channel area between the blade sections 17 of the stator blade row 14B, compared to the case according to the first embodiment. Therefore, while the corner stall is avoided, the flow velocity is decreased at the outlet of the stator blade row 14B. Accordingly, it is possible to further decrease pressure loss.
According to the axial flow compressor, the gas turbine including the same, and the stator blade of the axial flow compressor according to the above-described second embodiment of the present invention, it is possible to obtain an advantageous effect which is the same as that according to the above-described first embodiment.
[Third Embodiment]
Next, an axial flow compressor and a gas turbine including the same according to a third embodiment of the present invention will be described with reference to
In the axial flow compressor and the gas turbine including the same according to the third embodiment of the present invention which is illustrated in
Specifically, a portion facing a tip of the rotor blade row 12C on an inner peripheral surface 20C of a casing 13C, that is, the wall surface on the outer peripheral side of the rotor blade row 12C in the annular channel P has a protruding portion 54 such that the downstream side part of the portion facing the tip of the rotor blade row 12C is curved so as to further protrude to the annular channel P than the upstream side part of the portion. In other words, a meridional channel height of the annular channel P at an outlet (trailing edge 32r) of the rotor blade row 12C is set to be further decreased than a meridional channel height at an inlet (leading edge 31r) of the rotor blade row 12C. A specific configuration of the portion facing the tip of the rotor blade row 12C on the inner peripheral surface 20C of the casing 13C includes a first curved surface 56 which is smoothly connected to the inner peripheral surface 20C of the casing 13C on the upstream side from the rotor blade row 12C and which has a shape convex to the outside of the annular channel P, a second curved surface 57 which is smoothly connected to the first curved surface 56 while being located on the downstream side of the first curved surface 56 and which has a shape convex to the inside of the annular channel P, and a first inflection point 58 between the first curved surface 56 and the second curved surface 57. It is preferable that the position of the first inflection point 58 in the axial direction from the leading edge 31r is at a ratio approximately from 40% to 60% with respect to the axial chord length Cx.
Furthermore, a portion on the downstream side from the trailing edge 32r of the rotor blade row 12C on the inner peripheral surface 20C of the casing 13C is formed into a curved surface which increases the meridional channel height decreased at the outlet of the rotor blade row 12C. A specific configuration of the portion has a third curved surface 59 which is smoothly connected to the second curved surface 57 while being located on the downstream side of the second curved surface 57 and which has a shape convex to the inside of the annular channel P, a fourth curved surface 60 which is smoothly connected to the third curved surface 59 while being located on the downstream side of the third curved surface 59 and which has a shape convex to the outside of the annular channel P, and a second inflection point 61 between the third curved surface 59 and the fourth curved surface 60.
A blade tip clearance is disposed between the tip of the rotor blade row 12C and the inner peripheral surface 20C of the casing 13C. The blade tip clearance is disposed in order to avoid the rotor blade row 12C from coming into contact with the inner peripheral surface 20C of the casing 13C. In order to decrease the leakage flow of the working fluid from the blade tip clearance, each tip surface of the rotor blades of the rotor blade row 12C is a curved surface in accordance with the protruding shape of the inner peripheral surface 20C of the casing 13C. That is, the tip surface of the rotor blade has a shape in which the downstream side part is further recessed than the upstream side part.
In addition, as illustrated in
In the present embodiment, the meridional channel height in the upstream side portion of the rotor blade row 12C where the flow is accelerated is maintained to be substantially constant, thereby relieving the acceleration of the flow. As a result, the pressure loss caused by friction against the blade surface of the rotor blade row 12C is restrained. On the other hand, the downstream side portion of the portion (wall surface on the outer peripheral side of the rotor blade row 12C in the annular channel P) facing the tip of the rotor blade row 12C on the inner peripheral surface 20C of the casing 13C protrudes to the annular channel P. In this manner, the meridional channel height in the downstream side portion of the rotor blade row 12C where the flow is greatly decelerated is further decreased than the meridional channel height in the upstream side portion of the rotor blade row 12C. Accordingly, the deceleration of the flow of the boundary layer is locally relieved on the wall surface on the outer peripheral side of the rotor blade row 12C in the annular channel P. This restrains the development of the boundary layer on the wall surface on the outer peripheral side. As a result, it is possible to restrain the corner stall.
In addition, in the present embodiment, an increase rate in the blade height increasing direction of the blade outlet angle in the tip portion of the rotor blade of the rotor blade row 12C is set to be greater than that in the blade height intermediate portion of the rotor blade. Therefore, the flow is less turned in the vicinity of the wall surface on the outer peripheral side of the rotor blade row 12C in the annular channel P in which the flowing direction in the boundary layer tends to be greatly deviated from the main stream due to the influence of the upstream blade row (stator blade row which is not illustrated), thereby restraining the flow separation from occurring on the wall surface on the outer peripheral side. In addition, the increased blade outlet angle in the tip portion of the rotor blade restrains the outlet flow angle from being excessively decreased in the vicinity of the wall surface on outer peripheral side due to the protruding wall surface on the outer peripheral side. As a result, there is a tendency that a flowing direction downstream of the rotor blade row 12C is optimized or uniformized.
Furthermore, in the present embodiment, the portion on the downstream side from the trailing edge 32r of the rotor blade row 12C on the inner peripheral surface 20C of the casing 13C is curved, and the meridional channel height at the inlet (leading edge 31) of the stator blade row 14 on the downstream side of the rotor blade row 12C is set to be higher than the meridional channel height at the outlet (trailing edge 32r) of the rotor blade row 12C, thereby decreasing the velocity of the flow into the subsequent stator blade row 14. In this manner, it is possible to decrease the loss of the overall compressor.
In addition, in the present embodiment, in a case where the protruding shape of the portion facing the rotor blade row 12C on the inner peripheral surface 20C of the casing 13C is applied to an existing axial flow compressor, the meridional channel height decreased by the protruding inner peripheral surface 20C at the outlet of the rotor blade row is restored so as to match a meridional channel height at an inlet of an existing subsequent stator blade row. Accordingly, it is not necessary to redesign subsequent blade rows except for the rotor blade row to which the protruding shape is applied.
According to the axial flow compressor and the gas turbine including the same according to the third embodiment of the present invention, similarly to the above-described first embodiment, the corner stall of the rotor blade row 12C is restrained, and concurrently, the inflow condition for the subsequent stator blade row 14 can be optimized. As a result, it is possible to realize improved efficiency and ensured reliability of the overall compressor.
[Modification of Third Embodiment]
Next, an axial flow compressor and a gas turbine including the same according to a modification of the third embodiment of the present invention will be described with reference to
In the axial flow compressor and the gas turbine including the same according to the modification of the third embodiment of the present invention which is illustrated in
Specifically, an arrangement portion of the rotor blade row 12D on an outer peripheral surface 21D of a rotor 11D, that is, the wall surface on the inner peripheral side of the rotor blade row 12D in the annular channel P has a protruding portion 74 such that the downstream side part of the arrangement portion of the rotor blade row 12D is curved so as to further protrude to the annular channel P than the upstream side part of the arrangement portion. In other words, the meridional channel height of the annular channel P at the outlet (trailing edge 32r) of the rotor blade row 12D is set to be further decreased than the meridional channel height at the inlet (leading edge 31r) of the rotor blade row 12D. A specific configuration of the arrangement portion of the rotor blade row on the outer peripheral surface 21D of the rotor 11D includes a first curved surface 76 which is smoothly connected to the outer peripheral surface 21D of the rotor 11D on the upstream side from the rotor blade row 12D and which has a shape convex to the outside of the annular channel P, a second curved surface 77 which is smoothly connected to the first curved surface 76 while being located on the downstream side of the first curved surface 76 and which has a shape convex to the inside of the annular channel P, and a first inflection point 78 between the first curved surface 76 and the second curved surface 77. It is preferable that the position of the first inflection point 78 in the axial direction from the leading edge 31r is at a ratio approximately from 40% to 60% with respect to the axial chord length Cx.
Furthermore, a portion on the downstream side from the trailing edge 32r of the rotor blade row 12D on the outer peripheral surface 21D of the rotor 11D is formed into a curved surface which increases the meridional channel height decreased in the arrangement portion of the rotor blade row 12D. A specific configuration of the portion on the downstream side from the trailing edge 32r of the rotor blade row 12D has a third curved surface 79 which is smoothly connected to the second curved surface 77 while being located on the downstream side of the second curved surface 77 and which has a shape convex to the inside of the annular channel P, a fourth curved surface 80 which is smoothly connected to the third curved surface 79 while being located on the downstream side of the third curved surface 79 and which has a shape convex to the outside of the annular channel P, and a second inflection point 81 between the third curved surface 79 and the fourth curved surface 80.
In addition, as illustrated in
In the present embodiment, the downstream side part of the wall surface on the inner peripheral side of the rotor blade row 12D in the annular channel P further protrudes to the annular channel P than the upstream side part. In this manner, the deceleration of the flow is locally relieved in the downstream side portion on the hub portion of the rotor blade row 12D where the corner stall is likely to occur. Therefore, the development of the boundary layer is restrained on the wall surface on the inner peripheral side of the rotor blade row 12D. As a result, the corner stall can be restrained.
In addition, in the present embodiment, the increase rate in the hub direction (inner peripheral side wall surface direction of the annular channel P) of the blade outlet angle in the hub portion of the rotor blade row 12D is greater than that in the blade height intermediate portion of the rotor blade row 12D. Accordingly, the outlet flow angle is restrained from being excessively decreased at the outlet of the rotor blade row 12D due to the protruding wall surface on the inner peripheral side of the annular channel P. Therefore, it is possible to optimize the inflow condition for the subsequent stator blade row 14 of the rotor blade row 12D.
According to the axial flow compressor and the gas turbine including the same according to the above-described modification of the third embodiment of the present invention, it is possible to obtain an advantageous effect which is the same as that according to the above-described third embodiment.
As described above, according to the axial flow compressor and the gas turbine including the same according to the embodiments of the present invention, the downstream side of the portion of the wall surface 20A, 20C, 21D, 23, and 23B of the annular channel P where at least any one blade row of the rotor blade rows 12C and 12D and the stator blade rows 14, 14A, and 14B is located further protrudes to the annular channel P than the upstream side of the portion. Accordingly, development of the boundary layer on the wall surface 20A, 20C, 21D, 23, and 23B of the channel P is locally restrained. Therefore, it is possible to restrain flow separation (corner stall) in the corner portion formed between the blade surface of the blade rows 12C, 12D, 14, 14A, and 14B and the wall surfaces 23, 20A, 23B, 20C, and 21D of the channel P. Furthermore, the increase rate in the wall surface direction of the blade outlet angle in the blade end portion on the side of the wall surface having the protruding portion is set to be greater than the increase rate of the blade outlet angle in the blade height intermediate portion. Accordingly, it is possible to restrain the outlet flow angle of the flow at the outlet of the blade rows 12C, 12D, 14, 14A, and 14B from being excessively decreased due to the protruding portion of the channel wall surfaces 20A, 20C, 21D, 23, and 23B. Therefore, it is possible to optimize the inflow condition for the subsequent blade row. As a result, it is possible to realize improved efficiency and ensured reliability of the overall compressor.
[Another Embodiment]
In the above-described first and second embodiments and the modification thereof, an example has been described where the present invention is applied to a configuration in which the inner peripheral side casing 15 functioning as a stationary member is arranged on the inner peripheral side of the blade tip shrouds 18, 18A, and 18B of the stator blade rows 14, 14A, and 14B by leaving the gap G therebetween on the assumption of the final stage. However, the present invention is also applicable to a configuration in which the blade tip shroud of the stator blade row faces the rotor 11 functioning as a rotary member. Even in this case, a situation where the gap is present between the blade tip shroud and the rotor 11 is not changed. The boundary layer in the vicinity of the inner peripheral side wall surface of the annular channel P receives the influence due to the leakage flow from the gap. Therefore, the present invention provides effective means for restraining the corner stall.
In addition, in the above-described first embodiment and the modification thereof, an example has been described where the wall surfaces 23 and 20A on the inner peripheral side or the outer peripheral side of the stator blade rows 14 and 14A in the annular channel P are configured to include the first cylindrical surfaces 25 and 45, the first curved surfaces 26 and 46 which are smoothly connected to the first cylindrical surfaces 25 and 45, the second curved surfaces 27 and 47 which are smoothly connected to the first curved surfaces 26 and 46, the inflection points 28 and 48 between the first curved surfaces 26 and 46 and the second curved surfaces 27 and 47, and the second cylindrical surfaces 29 and 49 which are smoothly connected to the second curved surfaces 27 and 47. However, as long as the downstream side part of the wall surfaces of the stator blade rows 14 and 14A in the annular channel P has a shape further protruding to the annular channel P than the upstream side part, the wall surfaces of the stator blade rows 14 and 14A can also be configured to include at least the first curved surfaces 26 and 46, the second curved surfaces 27 and 47 which are smoothly connected to the first curved surfaces, and the inflection points 28 and 48 between the first curved surfaces 26 and 46 and the second curved surfaces 27 and 47.
In the above-described third embodiment, an example has been described where the present invention is applied to the rotor blade row 12C having no shroud. That is, the tip surfaces of the rotor blades of the rotor blade row 12C are formed into the curved surfaces corresponding to the protruding shape of the inner peripheral surface 20C of the casing 13C. The present invention is also applicable to a rotor blade row which has a shroud at the tip. In this case, the outer peripheral surface of the shroud is formed into a curved surface corresponding to the protruding shape of the inner peripheral surface 20C of the casing 13C.
In addition, the present invention is not limited to the first to third embodiments and the modifications thereof described above, but may include various other modifications. The above embodiments and modifications are described in detail in order to facilitate the understanding of the present invention, and the present invention is not limited to those which necessarily include all of the above-described configurations. For example, a configuration of a certain embodiment can be partially replaced with a configuration of another embodiment. In addition, a configuration of a certain embodiment can be added to a configuration of another embodiment. In addition, a configuration of each embodiment can be partially added to, deleted from, or replaced with another configuration.
Number | Date | Country | Kind |
---|---|---|---|
2015-150840 | Jul 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5779443 | Haller | Jul 1998 | A |
6312219 | Wood et al. | Nov 2001 | B1 |
6709239 | Chandraker | Mar 2004 | B2 |
6899526 | Doloresco | May 2005 | B2 |
7175393 | Chandraker | Feb 2007 | B2 |
7967571 | Wood | Jun 2011 | B2 |
8152473 | Clemen | Apr 2012 | B2 |
8157518 | Decker | Apr 2012 | B2 |
8167548 | Greim | May 2012 | B2 |
8292574 | Wood | Oct 2012 | B2 |
8337154 | Decker | Dec 2012 | B2 |
8523531 | Micheli | Sep 2013 | B2 |
8678757 | Li | Mar 2014 | B2 |
8684698 | Breeze-Stringfellow | Apr 2014 | B2 |
8708660 | Micheli | Apr 2014 | B2 |
8747072 | Micheli | Jun 2014 | B2 |
8864457 | Malandra | Oct 2014 | B2 |
9017037 | Baltas | Apr 2015 | B2 |
9074483 | Breeze-Stringfellow | Jul 2015 | B2 |
9291059 | Micheli | Mar 2016 | B2 |
9464526 | Cellier | Oct 2016 | B2 |
9797267 | Lohaus | Oct 2017 | B2 |
20040013520 | Guemmer | Jan 2004 | A1 |
20040028526 | Teramura et al. | Feb 2004 | A1 |
20090257866 | Greim | Oct 2009 | A1 |
20110081252 | Li | Apr 2011 | A1 |
20130136619 | Passrucker | May 2013 | A1 |
20130315739 | Cellier | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
2 133 573 | Dec 2009 | EP |
2001-132696 | May 2001 | JP |
2004-68770 | Mar 2004 | JP |
Entry |
---|
Extended European Search Report issued in counterpart European Application No. 16180705.2 dated Dec. 13, 2016 (9 pages). |
Korean-language Office Action issued in counterpart Korean Application No. 10-2016-0094055 dated May 1, 2018 (seven (7) pages). |
Number | Date | Country | |
---|---|---|---|
20170030375 A1 | Feb 2017 | US |