1. Field of the Invention
The present invention relates to an axial flow fan.
2. Description of the Related Art
In injection molding, one die is formed by combining two kinds of die parts, namely, a fixed die part and a movable die part. Melted resin is cast into the die and then is cooled. Thereafter, the cooled and solidified resin is taken out of the die. The outer frame 101, the stator vanes 102, and the base 103 are thereby formed as one member.
There are provided a plurality of seats 104 formed at parts where the diameter expanded part 101a and the stator vanes 102 are respectively joined. The seats 104 are positioned at blind portions when an integrally molded component having the outer frame 101, the stator vanes 102, and the base 103 is seen from a direction of being taken out of the die. When air is exhausted from the exhaust vent and hits the seats 104, there arise problems of noise generation, as well as decreases in volume of airflow and static pressure thereof.
Various preferred embodiments of the present invention provide an axial flow fan including an impeller that includes a plurality of rotor vanes and is rotatable about a central axis, a motor that rotary drives the impeller, a base portion that supports the motor, a housing that includes an intake vent, an exhaust vent, and an inner peripheral surface to surround the impeller and the motor, and a plurality of stator vanes that respectively connects the base portion and the housing, wherein the inner peripheral surface includes a first inner peripheral surface arranged to increase a distance from the central axis toward the intake vent or the exhaust vent in an axial direction, and a recess located between the first inner peripheral surface and one of the plurality of stator vanes and faces the first inner peripheral surface.
According to the above described configuration, airflow is allowed to smoothly pass through the housing, resulting in a decrease in noise generated in the axial flow fan. Moreover, decreases can be prevented in a volume of airflow taken into or exhausted from the axial flow fan as well as a static pressure thereof. Further, the housing can be molded with a smaller amount of resin, thereby achieving significant cost reduction for manufacture of the axial flow fan.
The above and other features, elements, advantages and characteristics of the present invention will become more apparent from the following detailed description of preferred embodiments thereof with reference to the attached drawings.
Referring to
As shown in
As shown in
As shown in
As shown in
The inner peripheral surface 40 preferably includes intake-side first inner peripheral surfaces 42a respectively provided at four corners or along an entire inner peripheral area thereof of the intake vent 43. The intake-side first inner peripheral surfaces 42a preferably are formed so as to gradually increase the radial distance between the central axis 23 and the inner peripheral surface 40 toward the intake vent 43 in the axial direction. Similarly, the inner peripheral surface 40 preferably includes exhaust-side first inner peripheral surfaces 42b respectively provided at four corners or along an entire inner peripheral area thereof of the exhaust vent 41 so as to gradually increase the radial distance between the central axis 23 and the inner peripheral surface 40 toward the exhaust vent 41 in the axial direction.
As shown in
The base portion 16 is preferably a bottomed and substantially cylindrical member and axially supports the motor portion 14. The base portion 16 is preferably disposed in the outer frame 15 at the intake vent 43 in the axial direction. The base portion 16 preferably includes a surface, on the axially exhaust side, which is flush with respect to ends 15a of the outer frame 15 on the axially exhaust side.
As shown in
Alternatively, the first and second surfaces 27 and 28 may be made inclined with respect to the central axis 23 at a different angle, so that airflow is oriented to an arbitrary direction (such as the radially outward direction). The stator vanes 13 may be disposed not at the exhaust vent 41 but at the intake vent 43 in the axial direction. In this case, the second edge 26 is positioned on the opposite side with respect to the first edge 25 in the direction R of rotation of the impeller 12. Air is oriented by the stator vanes 13 and is taken into the housing 18. Accordingly, reduced is noise generated by airflow hitting the inner peripheral surface 40 and the like.
As shown in
Such a configuration minimizes a volume of each of the seats which is formed at a connection between the first outer edge 53 and the corresponding exhaust-side first inner peripheral surface 42b. Therefore, airflow generated by rotation of the impeller 12 is allowed to smoothly pass in the vicinity of the respective connections. As a result, reduced is noise generated by airflow hitting the connections.
In addition, as the volume of each of the seats is minimized, there is secured a space to arrange therein the impeller 12 within the housing 18, thereby realizing increases in volume of airflow and static pressure thereof.
The volume of each of the seats, which is minimized, enables reduction in the amount of resin required for forming of the housing 18 (the amount of aluminum, aluminum alloy, or the like in the case of aluminum die-casting). Therefore, reduction is realized in the cost of the material for the axial flow fan 11.
The end of the first outer edge 53 on the axially intake side is preferably connected to a part 42c having a minimized diameter on the exhaust-side first inner peripheral surface 42b (more specifically, the end of the second inner peripheral surface 45 on the axially exhaust side). Accordingly, secured are strength of the connection between each of the first stator vanes 13A and the inner peripheral surface 40 as well as an inner diameter of the second inner peripheral surface 45. It should be noted that each of the first stator vanes 13A may be connected to both the corresponding exhaust-side first inner peripheral surface 42b and the second inner peripheral surface 45 including the boundary therebetween. Further, the second edges 26 of the first stator vanes 13 are formed to be flush with respect to the ends 15a of the outer frame 15, thereby realizing prevention of an increase in size of the outer frame 15.
Described below is an axial flow fan 11A according to a first preferred modification made to the first preferred embodiment of the present invention.
As shown in
There is formed a recess 52A on the axially exhaust side of a radially outer end of each of the first stator vanes 13B. The recess 52A is preferably a space surrounded by a first outer edge 53 which is in parallel or substantially in parallel with the central axis 23, a second outer edge 531 which is perpendicular or substantially perpendicular to the first outer edge 53, and an exhaust-side first inner peripheral surface 42b. On the other hand, the radially outer end of each of the first stator vanes 13B is preferably connected on the axially intake side thereof to the corresponding exhaust-side first inner peripheral surface 42b. According to such a configuration, the volume of the seat formed at the connection between the first stator vane 13B and the inner peripheral surface 40 is minimized. As a result, reduced is noise generated by airflow hitting the respective connections, and prevented are decreases in volume of airflow and static pressure thereof.
Each of the first stator vanes 13B preferably includes an end 13a, on the axially exhaust side, which is flush with respect to the ends 15a of the outer frame 15. According to such a configuration, the axial dimension of the axial flow fan 11A is suppressed to realize reduction in size of the axial flow fan 11A.
Each of the first stator vanes 13B preferably includes an end 13b, on the axially intake side, which is flush with respect to parts (the boundaries between the second inner peripheral surface 45 and the respective exhaust-side first inner peripheral surfaces 42b) having a minimized diameter on the exhaust-side first inner peripheral surfaces 42b. According to such a configuration, there is secured an adequate space for disposing the impeller 12 in the housing 18. Airflow generated by rotation of the impeller 12 is guided smoothly to the stator vanes 13, and reduced is noise generated by airflow hitting the first stator vanes 13B. It should be noted that the radially outer end of each of the first stator vanes 13B may be connected to both the second inner peripheral surface 45 and the corresponding first inner peripheral surface 42 including the boundary therebetween.
The first outer edge 53 and the second outer edge 531 may not necessarily form an angle equal to 90 degrees, but may form an acute angle or an obtuse angle. Further alternatively, the respective first stator vanes 13B may have such angles different from one another.
As shown in
As illustrated in
The first outer edge 53 may be positioned radially inside or outside the second inner peripheral surface 45. The boundary 54 or 541 may be chamfered into a shape different from one another in the respective recesses 52B or the respective first stator vanes 13C.
As shown in
As illustrated in
Each of the first stator vanes 13D preferably includes an end 13a of a third outer edge 26C on the axially exhaust side, which is flush or substantially flush with respect to the ends 15a of the outer frame 15. The third outer edge 26C is perpendicular or substantially perpendicular to the central axis. According to such a configuration, the axial dimension of the axial flow fan 11C is decreased to realize a reduction in size of the axial flow fan 11C.
Each of the first stator vanes 13D preferably includes an axially upper edge 25C which is angled with respect to the central axis 23. A radially outermost portion of the axially upper edge 25C is angled upward with respect to the axial direction. Further, a plurality of rotor vanes 22C of the impeller 12 preferably includes an axially lower edge 12C which is angled with respect to the central axis 23. A radially outermost portion of the axially lower edge 12C is inclined upward with respect to the axial direction. According to such a configuration, an adequate space to provide the impeller 12 in the housing 18 is secured. Airflow generated by rotation of the impeller 12 is guided smoothly to the first stator vanes 13D, and noise generated by airflow hitting the first stator vanes 13D is prevented and minimized.
The first outer edge 53C is preferably positioned further in the radial direction than a radially outermost edge of the rotor vanes 22C of the impeller 12. It should also be noted that the first outer edge 53C of one first stator vane 13D may be arranged to have a different shape than others of the first stator vanes 13D, if so desired.
The first outer edge 53C and the second outer edge 531C preferably define an obtuse angle. However, this angle could also be changed to an angle equal to approximately 90 degrees or an acute angle if so desired. Further alternatively, the respective first stator vanes 13D may have angles that are different from one another.
Each of the first stator vanes 13D also preferably includes a first inner edge 54C and a second inner edge 532C. The first inner edge 54C is substantially angled with respect to the central axis 23 and the second inner edge 532C is preferably perpendicular or substantially perpendicular with respect to the central axis 23. The first inner edge 54C and the second inner edge 532C are arranged to preferably define an obtuse angle. However, this angle could also be changed to an angle equal to approximately 90 degrees or an acute angle if so desired. The first inner edge 54C and the second inner edge 532C are arranged to define a second recess 521C together with an outer peripheral surface 161 of the base portion 16. As a result, noise generated by airflow hitting the respective connections is prevented, and decreases in volume of airflow and static pressure thereof are also prevented.
As shown in
As illustrated in
Each of the stator vanes 13E preferably includes an axially upper edge 25D which is angled with respect to the central axis 23. A radially outermost portion of the axially upper edge 25D is angled upward with respect to the axial direction. Further, a plurality of rotor vanes 22D of the impeller 12 preferably includes an axially lower edge 12D which is angled with respect to the central axis 23. A radially outermost portion of the axially lower edge 12D is angled upward with respect to the axial direction. According to such a configuration, an adequate space to provide the impeller 12 in the housing 18 is secured. Airflow generated by rotation of the impeller 12 is guided smoothly to the stator vanes 13E, and noise generated by airflow hitting the stator vanes 13E is prevented and minimized.
The first outer edge 53D is preferably positioned further in the radial direction than a radially outermost edge of the rotor vanes 22D of the impeller 12. It should also be noted that the first outer edge 53D of one stator vane 13E may be arranged to have a different shape than others of the stator vanes 13E, if so desired.
Each of the stator vanes 13E also preferably includes a first inner edge 54D and a second inner edge 532D. The first inner edge 54D is preferably curved or convex and arranged to be connected with the second inner edge 532D, which is preferably perpendicular or substantially perpendicular with respect to the central axis 23. The first inner edge 54D and the second inner edge 532D are arranged to define a second recess 521D together with an outer peripheral surface 162 of the base portion 16. Further, the outer peripheral surface 162 of the base portion 16 is also preferably curved or convex. As a result, noise generated by airflow hitting the respective connections is prevented, and decreases in volume of airflow and static pressure thereof are also prevented.
Alternatively, the first stator vanes 13A, 13B, 13C, 13D, and 13E according to the various preferred embodiments of the present invention may be provided on the axially intake side (that is, at the intake vent 43). The axial flow fan may include more than one type of stator vanes selected from the first stator vanes 13A, 13B, 13C, 13D, and 13E according to the various preferred embodiments of the present invention. Further, the radially outer end of each of the first stator vanes 13A, 13B, 13C, 13D, and 13E may be connected to a part other than the exhaust-side first inner peripheral surface 42b and 42D. Even in such cases, airflow is allowed to smoothly pass in the vicinity of the respective stator vanes.
The intake-side first inner peripheral surfaces 42a may have a shape different from that of the exhaust-side first inner peripheral surfaces 42b and 42D. Further, the respective intake-side first inner peripheral surfaces 42a (or the respective exhaust-side first inner peripheral surfaces 42b and 42D) may have shapes different from one another at the respective corners, and may have distances from the central axis 23 different from one another.
While the preferred embodiments and the preferred modifications of the present invention have been described above, the present invention is not limited to the above cases. It is to be understood that variations and modifications will be apparent to those skilled in the art without departing the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2007-283002 | Oct 2007 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 12254978 | Oct 2008 | US |
Child | 13338563 | US |