The present invention relates to an axial flow fan to be used for a ventilation fan, an air-conditioning apparatus, a cooling fan, or other devices.
Known rotary blades (sometimes referred to as rotary vanes) for an axial flow fan are shaped to be swept forward in a rotation direction and inclined forward to a suction side to reduce noise. With such rotary blades, a shape of a bellmouth has been employed that is semi-open to overlap portions of the rotary blades at trailing edges thereof (hereinafter referred to as a “semi-open bellmouth”). Reducing noise has been thus achieved by configuring the shape of the bellmouth or the positional relationship between the blades and the bellmouth.
To further reduce the noise, a shape of the rotary blade has been recently proposed that can reduce interference caused by a blade tip vortex. In one such proposed shape, the blade is bent toward an upstream side of a flow of air at a blade outer peripheral portion of the blade. This is to address a leakage flow around the blade outer peripheral portion from the pressure surface side to the suction surface side, and a blade tip vortex generated on the blade suction surface. The leakage flow is generated when the blade is rotated due to a pressure difference between a pressure surface and a suction surface of the rotary blade, and the blade tip vortex is generated due to this leakage flow. Interference of the leakage flow and the blade tip vortex with a vane surface, an adjacent blade, and the bellmouth is a cause of increased noise.
An axial flow fan to be used for a ventilation fan, an air-conditioning apparatus, a cooling fan, or other devices, is rarely equipped solely with rotary blades; a bellmouth is arranged around the rotary blades to rectify a flow and increase a pressure. Therefore, not only the rotary blade is relevant to air blowing and noise characteristics, but also do the other factors, such as the shape of the bellmouth, the positional relationship between the rotary blades and the bellmouth.
A known axial flow fan includes a propeller fan having a plurality of blades formed on an outer periphery of a hub, and a fan guide. A dihedral angle on a mean flow surface of the blade is set to approximately 60 degrees. The fan guide is formed into a tubular shape, and a length of the fan guide in an axial direction is set to 0.8H or more of a height H of the blade. A suction-side end portion of the fan guide is shifted toward a discharge side from suction-side end portions of the blades, and an amount U of the shift is set to satisfy a relationship of 0.3H≤U≤0.5H (see, for example, Patent Literature 1).
Further, there is known an axial flow fan including a propeller fan configured to be rotated by a drive source, a tubular air introducing portion covering the propeller fan while securing a predetermined size of space behind the propeller fan, and a shroud formed continuously to the air introducing portion to be opened on a front side of the propeller fan so as to introduce air in a wide range on the front side of the propeller fan to the air introducing portion. The opening portion of the shroud is obliquely shaped and narrowed to the air introducing portion. Each of the blades of the propeller fan is formed in such an inclined manner as to be swept forward in a rotation direction, whereas a leading edge portion of each of the blades formed to be approximately perpendicular to the rotation axis of the propeller fan. A forward end side of the propeller fan in the direction of the rotation axis is arranged to be swept forward from a boundary between the air introducing portion and the opening portion toward the opening portion by a predetermined amount (see, for example, Patent Literature 2).
Further, there is known a blower device including a propeller fan having a plurality of blades being formed on an outer peripheral surface of a hub as a rotation center and each having a thick blade shape as typified by an airfoil blade, a bellmouth being located on a radially outer side with respect to the propeller fan and partitioning a suction region and a discharge region, and a fan guard located on a discharge side with respect to the propeller fan. The bellmouth includes a suction-side arc portion located on a suction side, a discharge-side arc portion located on the discharge side, and a cylindrical portion located between the discharge-side arc portion and the suction-side arc portion. When a height of the bellmouth in an axial direction at a portion overlapping with an outer peripheral portion of each of the blades is represented by H1, and a height of the outer peripheral portion of each of the blades is represented by H0, those parameters are set so as to fall within a range of H1/H0=0.40 to 0.65 (see, for example, Patent Literature 3).
As disclosed in Patent Literatures 1 to 3, as for the related-art rotary blades, consideration is made on the axial flow fan including the semi-open bellmouth that overlaps with the bellmouth in a range from the chord center to the blade trailing edge, and the axial flow fan constructed such that most part of each of the rotary blades is accommodated in a bellmouth air channel.
Further, as for the propeller fan having the shape in which the blade outer peripheral portion is bent in the upstream direction of the flow of air, an optimal positional relationship between the rotary blades and the bellmouth is proposed as well as a shape of the bellmouth.
For example, there is known an axial flow fan including a hub being a rotation center, a plurality of vanes being formed on an outer peripheral surface of the hub so that outer peripheral ends of a leading edge and a trailing edge are located on a front side in a rotation direction, and a bellmouth being arranged so as to surround outer peripheries of the plurality of vanes and including an air inlet-side first round surface portion, a cylindrical portion having a predetermined width and being located on a downstream side with respect to the inlet-side first round surface portion, and an air outlet-side second round surface portion located on a downstream side with respect to the cylindrical portion. An outer peripheral end portion of each of the vanes is inclined toward the air inlet-side. The outer peripheral end of the inclined trailing edge portion of each of the vanes is located at an air outlet-side end portion of the cylindrical portion of the bellmouth. The trailing edge portion of each of the vanes at a part other than the inclined part is located at an air outlet-side end portion of the second round surface portion of the bellmouth (see, for example, Patent Literature 4).
Further, in order to obtain an axial flow fan in which blade outer peripheral portions are each bent in an upstream direction of a flow of air and most part of each of blades is accommodated in a bellmouth air channel, and in which noise caused by a blade tip vortex is small and the degree of decrease in air blowing performance is small, there is also proposed an axial flow fan including a bellmouth air channel gradually reduced in diameter from a large-diameter air inlet side to an air outlet side, in which most part of each of the blades is accommodated in the bellmouth air channel (see, for example, Patent Literature 5).
Further, there is also proposed an axial flow fan including a boss configured to be rotated about an axial center, and a plurality of rotary blades arranged on an outer peripheral portion of the boss. The rotary blades are each formed so that a chord center line connecting chord center points from an inner peripheral end to an outer peripheral end of the rotary blade is curved to protrude toward a downstream side of a flow of air in an entire region of the rotary blade in a radial direction (see, for example, Patent Literature 6).
Patent Literature 1: Japanese Utility Model Application Publication No. Sho 62-169295
Patent Literature 2: Japanese Patent No. 2560793
Patent Literature 3: Japanese Unexamined Patent Application Publication No. 2002-257096
Patent Literature 4: Japanese Patent No. 3744489
Patent Literature 5: Japanese Patent No. 4818310
Patent Literature 6: International Patent WO 2011/141964 A1
In the axial flow fan to be used for ventilation, an outdoor unit of the air-conditioning apparatus, or so, to attain the noise reduction as the main purpose, the rotary blades are each formed into the shape swept forward and inclined forward, and the blade outer peripheral portions are each formed into the shape bent toward the upstream side of the flow of air. Further, the semi-open bellmouth type is employed (for example, Patent Literatures 1 to 4).
Further, the bellmouth shape is also optimized so as to reduce noise in the type of the axial flow fan in which the rotary blades are each formed into the shape swept forward and inclined forward, and the blade outer peripheral portions are each formed into the shape bent toward the upstream side of the flow of air so that most part of each of the rotary blades is accommodated in the bellmouth (for example, Patent Literature 5).
On the other hand, in the axial flow fan to be used, for example, for the cooling fan to be built into a device, it is important to obtain a necessary air flow rate, static pressure, and noise characteristic while reducing the product height and the area for installation of the product so as to restrict the size of the device into which the axial flow fan is assembled, and to avoid interference with other components. However, the optimal shapes as in the above-mentioned patent literatures cannot be applied as the bellmouth shape required for reducing noise of the axial flow fan in many cases. Thus, there is a problem of the deterioration of the air blowing and noise characteristics.
The present invention has been made to overcome the above-mentioned problem, and has an object to provide an axial flow fan in which rotary blades are accommodated in a bellmouth and that can reduce deterioration of air blowing and noise characteristics.
In order to solve the above-mentioned problem to attain the object, the present invention employs the following configuration. Specifically, there is provided an axial flow fan, comprising: a boss portion rotationally driven by a motor; a plurality of rotary blades each extending radially from a periphery of the boss portion and being configured to force air to flow in an airflow direction being a direction of a rotation axis of the motor; and a bellmouth accommodating the plurality of rotary blades, the bellmouth comprising a suction-side round portion being formed on a suction side of the bellmouth and having a curved surface expanded in a radial direction of the bellmouth and a discharge-side round portion being formed on a discharge side of the bellmouth and having a curved surface expanded in the radial direction of the bellmouth, the plurality of rotary blades each being entirely inclined to have an outer peripheral portion of each of the plurality of rotary blades in a downstream side in an airflow direction, entirety of the outer peripheral portion being located on the downstream side in the air flow direction with respect to the suction-side round portion.
According to the present invention, in the axial flow fan constructed such that the entire outer peripheral portion of each of the rotary blades is accommodated in the bellmouth portion, the rotary blades each entirely inclined in the downstream direction of the flow of airflow of air to be blown as approaching to the outer peripheral portion of each of the blades, that is, the rotary blades each inclined backward are employed, and the positional relationship between the outer peripheral-side leading end portion of each of the rotary blades and the bellmouth suction portion is optimized. Thus, there is attained an effect of obtaining a blower device reduced in noise that may be caused by turbulence generated in the bellmouth suction portion and less reduced in air blowing performance.
Further, thinning of the axial flow fan in the axial direction of the motor can be realized.
Now, an axial flow fan according to an embodiment of the present invention is described in detail referring to the drawings. Note that, the present invention is not limited by this embodiment.
The rotary blades 1 each having a three-dimensional shape, which are illustrated in
Next, description is given of the axial flow fan in which the rotary blade 5 inclined backward according to this embodiment, which is illustrated in
In
Further, when dimensions of an outer shell of a product are reduced or a height of the product is reduced along with downsizing of the product, the bellmouth suction-side round portion 8, a bellmouth straight portion 7, or a bellmouth discharge-side round portion 9 are downsized. Therefore, the rotary blade 5 is liable to suck the turbulence indicated by reference symbol 14, thus leading to the deterioration of the air blowing and noise characteristics.
Note that, the bellmouth discharge-side round portion 9 corresponds to a curved surface-like portion of the bellmouth 6, which is formed on a discharge side to expand in the radial direction of the bellmouth, and the bellmouth straight portion 7 corresponds to a smooth portion located between the bellmouth suction-side round portion 8 and the bellmouth discharge-side round portion 9 and connecting the bellmouth suction-side round portion 8 and the bellmouth discharge-side round portion 9 to each other.
In view of the above, as illustrated in
Further, a motor 15 is arranged on the downstream side of the flow of air with respect to the rotary blades 5, and the rotary blades 5 are each inclined backward to the downstream side. Therefore, in an axial direction of the motor 15 (flow direction of the flow of air), an end surface of the motor 15 on the upstream side can be located on the upstream side with respect to end surfaces of the rotary blades 5 on the downstream side. With this, the rotary blades 5 and the motor 15 can be partially overlapped with each other so that a product height L can be reduced to thin the axial flow fan.
Pieces of measured data in
In
In
It is shown from
Further, when further reduction in the product height L is demanded, and the product height is represented by L′ as illustrated in
As illustrated in
Next, a second example of this embodiment is described referring to
Note that, the broken line connecting Pb and Pt as illustrated in
On the chord center line Pr and the chord center line Pr1, the chord center points Pb at the boss portion 2 and the chord center points Pt at the blade outer peripheral portion are located at the same positions, respectively, and a distance from the OX axis to the chord center point Pt at the blade outer peripheral portion is H.
In the rotary blade 5b, a first region in a range from the boss portion 2 (radius Rb) to a bending point Pw at an intermediate portion in the radial direction is inclined toward the downstream side at a constant first backward inclination angle δzw, and a second region in a range from the bending point Pw to the blade outer peripheral portion is inclined toward the upstream side with respect to the first region.
When a radius of the bending point Pw on the chord center line Pr1 is represented by Rw, and a second backward inclination angle corresponding to an angle of inclination toward the downstream side for a line Pr connecting the chord center point Pt at the blade outer peripheral portion and the chord center point Pb at the outer periphery of the boss portion 2 is represented by δzt, the first backward inclination angle δzw is expressed by the following expression.
δzw=tan−1(Ls/(R−Rb))
(Rb<R≤Rw)
An inclination angle δzd corresponding to the chord center point Pr2 at the arbitrary radius R in the second region in the range from the bending point Pw to the blade outer peripheral portion (radius Rt) is set to be an n-th order function (1≤n) of the radius R as expressed below.
δzd=α(R−Rw)n+δzw
α=(δzt−δzw)/(Rt−Rw)n
(Rw<R≤Rt)
Note that, the chord center line Pr1 in the second region may be inclined straight toward the upstream side at a constant forward inclination angle instead of setting the above-mentioned inclination angle δzd to be the n-th order function (1≤n) of the radius R.
In the rotary blade 5b defined in the above-mentioned manner under the state in which the outer peripheral portion of the rotary blade 5b is covered by the bellmouth 6, the respective parameters of the rotary blade 5b of this example are determined in the following manner, that is, δzt−δzw=+7.5 degrees, Rw=0.7Rt, and n=2. In this rotary blade 5b, reduction in noise by about −1 dB was verified experimentally as compared to the rotary blade 5 inclined backward at a constant angle.
As described above, the axial flow fan according to the present invention can be built into a ventilation fan, an outdoor unit of an air-conditioning apparatus, and other devices. In particular, the axial flow fan according to the present invention is suitable as an axial flow fan restricted in size of a device body and other factors.
1 rotary blade 1′ rotary blade projected on plane perpendicular to rotation axis 1b′ blade leading-edge portion 1c′ blade trailing-edge portion 1d′ blade outer peripheral portion 2 boss portion 3 rotation axis 4 rotation direction 5, 5a, 5b rotary blade 6 bellmouth A direction of flow of air Pb, Pb′ chord center point at boss portion Pt, Pt′ chord center point at blade outer peripheral portion Pr, Pr′ locus of chord center point (chord center line) Pr1 locus of chord center point (chord center line) Pr2 chord center point Pw bending point being starting point of change of constant inclination angle Sc plane perpendicular to rotation axis through chord center point at boss portion H distance from OX axis to chord center point Pt at blade outer peripheral portion δz1 backward inclination angle of rotary blade δz2 forward inclination angle of rotary blade δzw constant backward inclination angle of first region on inner side with respect to bending point Pw (first backward inclination angle) δzt inclination angle of line connecting chord center point Pb at boss portion and chord center point Pt at blade outer peripheral portion (second backward inclination angle) δzd inclination angle toward downstream side for line connecting chord center point Pr2 at arbitrary radius R in second region on outer side with respect to bending point Pw and chord center point PI at boss portion 7 bellmouth straight portion 7′ bellmouth straight portion reduced in length 8 bellmouth suction-side round portion 9 bellmouth discharge-side round portion 10 product suction-side end surface 11 product discharge-side end surface 12 product outer shell portion 13 outer peripheral-side leading end portion of rotary blade B flow of air flowing into outer peripheral-side leading end portion along bellmouth 14 turbulence of flow of air B 15 motor Z1 distance between leading end portion of rotary blade and bellmouth suction-side round portion H height of outer peripheral portion of rotary blade L product height 17 outer peripheral-side trailing edge portion of rotary blade L′ reduced product height
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/053549 | 2/14/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/121989 | 8/20/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4482302 | Grignon | Nov 1984 | A |
6994523 | Eguchi | Feb 2006 | B2 |
9394911 | Nakashima | Jul 2016 | B2 |
20100269537 | Tadokoro et al. | Oct 2010 | A1 |
20130101420 | Nakashima et al. | Apr 2013 | A1 |
20130136591 | Yen et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
102893034 | Jan 2013 | CN |
S57-069995 | Apr 1982 | JP |
S-62-169295 | Oct 1987 | JP |
H-06-229398 | Aug 1994 | JP |
2560793 | Dec 1996 | JP |
2002-257096 | Sep 2002 | JP |
3744489 | Feb 2006 | JP |
4818310 | Nov 2011 | JP |
WO 2011141964 | Nov 2011 | JP |
2013-113128 | Jun 2013 | JP |
WO 2009113338 | Sep 2009 | WO |
WO 2011141964 | Nov 2011 | WO |
Entry |
---|
Office Action (The First Office Action) dated Dec. 19, 2017, by the State Intellectual Property Office of the People's Republic of China in corresponding Chinese Patent Application No. 201480075403.0, and an English Translation of the Office Action. (13 pages). |
Office Action (Notice of Reasons for Rejection) dated Jan. 17, 2017, by the Japanese Patent Office in corresponding Japanese Patent Application No. 2015-562656, and an English Translation of the Office Action. (6 pages). |
Office Action (Notice of Reasons for Rejection) dated Apr. 11, 2017, by the Japanese Patent Office in corresponding Japanese Patent Application No. 2015-562656 and English translation of the Office Action. (6 pages). |
Office Action dated Aug. 29, 2018, by the Chinese Patent Office in corresponding Chinese Patent Application No. 201480075403.0 and English translation of the Office Action. (13 pages). |
Office Action dated Mar. 21, 2019, by the Chinese Patent Office in corresponding Chinese Patent Application No. 201480075403.0 and English translation of the Office Action. (9 pages). |
International Search Report (PCT/ISA/210) dated May 13, 2014, by the Japanese Patent Office as the International Searching Authority for International Application No. PCT/JP2014/053549. |
Number | Date | Country | |
---|---|---|---|
20160348699 A1 | Dec 2016 | US |