The present invention relates to an axial flow fan typically used to cool the inside of an electric apparatus.
Japanese Patent Application Publication No. 2007-309313 (JP2007-309313A, FIG. 1) discloses an axial flow fan which includes a fan housing including a first flange formed on one side in the axial direction of the axial flow fan where a discharge port is positioned, a second flange formed on the other side in the axial direction where a suction port is positioned, and a cylindrical portion formed between the first flange and the second flange. A first lead wire engaging portion is formed in the first flange to be engaged with a plurality of lead wires such that the lead wires are pulled out therefrom into an outer space defined between the first flange and the second flange. A second lead wire engaging portion is formed in the second flange to be engaged with the plurality of lead wires, which have been pulled out into the outer space, such that they are then pulled out toward the suction port.
In the conventional axial flow fan mentioned above, the plurality of lead wires are pulled out in the axial direction toward the suction port. With such configuration, if it is difficult to pull out the lead wires toward the suction port due to the placement of the axial flow fan, for example, when the lead wires need to be pulled out toward the discharge port in the axial direction of the axial flow fan, wiring of the lead wires becomes complicated. In the conventional axial flow fan, lead wires pulled out toward the suction port may be in contact with an impeller, or lead wires pulled around a long way toward the suction port may be blown by the wind, thereby causing noise.
An object of the present invention is to provide an axial flow fan in which lead wires may be pulled out toward either side of the fan where a suction port is positioned or a discharge port is positioned.
Another object of the present invention is to provide an axial flow fan capable of reducing noise.
Still another object of the present invention is to provide an axial flow fan in which lead wires may securely be pulled into a space outside the fan even if a plurality of axial flow fans are used.
An axial flow fan according to the present invention includes a fan housing, an impeller, a motor including a rotor and a stator, a motor casing, a plurality of webs in one of which a groove portion is formed, a plurality of lead wires, a first lead wire engaging portion, and a second lead wire engaging portion. The fan housing includes a first flange positioned on one side of a rotary shaft in an axial direction of the rotary shaft, a second flange positioned on the other side of the rotary shaft in the axial direction, and a cylindrical portion provided between the first flange and the second flange. The fan housing has an air channel defined by an inner space formed by the first flange, the second flange and the cylindrical portion, and the air channel has a suction port and a discharge port.
The impeller is disposed in the air channel and has a plurality of blades. The rotor to which the impeller is fixed rotates about the rotary shaft, and a stator is provided with respect to the rotor. The motor is configured to rotate the rotor and is received in a motor casing. The motor casing includes a bottom wall portion located within the first flange and a peripheral wall portion formed continuous with the bottom wall portion and extending toward the second flange.
The plurality of webs are disposed at intervals in a direction of rotation of the impeller and located within the air channel to connect the motor casing and the first flange. The groove portion is formed in one of the webs to allow an internal space of the motor casing to communicate with an outer space of the fan housing. The plurality of lead wires are received in the groove portion that is formed in the one of the webs and connected to a power supply circuit of the motor, and extend toward the outer space of the fan housing.
The first lead wire engaging portion is formed in a connecting portion between the first flange and the one of the webs to be engaged with the plurality of lead wires such that the lead wires are pulled out from the first lead wire engaging portion into an outer space defined between the first flange and the second flange of the fan housing and located outside the cylindrical portion of the fan housing. The second lead wire engaging portion is formed in the second flange to be engaged with the plurality of lead wires such that the plurality of lead wires, which have been engaged with the first lead wire engaging portion and pulled out therefrom into the outer space, are then pulled out toward the other side of the rotary shaft in the axial direction where the second flange is positioned.
A third lead wire engaging portion is formed in the first flange at a given distance from the first lead wire engaging portion to be engaged with the plurality of lead wires such that the lead wires, which have been pulled out from the first lead wire engaging portion into the outer space, are then pulled out toward the one side in the axial direction where the first flange is positioned. In this manner, when the third lead wire engaging portion is provided in the first flange at a given distance from the first lead wire engaging portion with respect to the second lead wire engaging portion provided in the second flange, the lead wires may be pulled out not only toward the side where the second flange is provided but also toward the side where the first flange is provided. Namely, according to the present invention, the lead wires may be pulled toward either side in the axial direction. Also, a plurality of lead wires may be divided and separately pulled out toward both sides in the axial direction. Thus, the axial flow fan according to the present invention allows for a wider range of selection for placement of the axial flow fan and pulling out or wiring direction of the lead wires. Further, owing to the third lead wire engaging portion, base portions of the pulled-out lead wires may firmly be secured when the plurality of lead wires are pulled out toward one side in the axial direction. Thus the lead wires may be prevented from being wound into the impeller when they come into contact with the impeller. Also, noise may be prevented from being generated due to the existence of the lead wired on the other side in the axial direction.
The second lead wire engaging portion formed in the second flange and the third lead wire engaging portion formed in the first flange may face each other in the axial direction. When the second and third lead wire engaging portions are formed in positions where they face each other in the axial direction, multiple axial flow fans of the same shape may be used by arranging the axial flow fans in the axial direction such that the second lead wire engaging portion provided on one of adjoining two axial flow fans may be adjacent to the third lead wire engaging portion provided on the other axial flow fan. As a result, when two axial flow fans are used by arranging them in the axial direction such that one side of one of the two axial flow fans where the second lead wire engaging portion is formed is in contact with one side of the other axial flow fan where the first lead wire engaging portion is formed, the lead wires engaged with the second lead wire engaging portion of one of the axial flow fan may be engaged with the third lead wire engaging portion and the second lead wire engaging portion of the other axial flow fan adjacent to the one axial flow fan. As a result, the lead wires of the one axial flow fan may be pulled out in the axial direction toward the side where the second lead wire engaging portion of the other axial flow fan is positioned through the third and second lead wire engaging portions of the other axial flow fan. Namely, even when a plurality of axial flow fans of the same shape are used by arranging them in the axial direction, the lead wires may securely be pulled out in the axial direction into a space outside the fan, regardless of whichever side the first and second lead wire engaging portions are formed on.
Preferably, the first flange and the second flange may have a substantially quadrangular outline shape as seen in the axial direction. Also preferably, the first lead wire engaging portion and the third lead wire engaging portion may be formed in one side of the quadrangular outline of the first flange while the second lead wire engaging portion be formed in one side of the quadrangular outline of the second flange, opposed to the side of the first flange where the first and the third lead wire engaging portions are formed. With such configuration, the third lead wire engaging portion is disposed in the vicinity of the first lead wire engaging portion. Accordingly, the lead wires need not be longer than necessary when the lead wire is to be pulled out in the axial direction toward a side where the first lead wire engaging portion is formed. Further, when the second lead wire engaging portion is located adjacent to the third lead wire engaging portion in the axial direction under the above-discussed condition, the lead wires need not be longer than necessary when multiple axial flow fans of the same shape are used by arranging them in the axial direction as mentioned above.
The first lead wire engaging portion may be constituted from a first through-hole formed in the first flange to pass therethrough in the axial direction and communicating with the groove portion of the one of the webs, and a first slit formed in the first flange to communicate with the first through-hole, passing through the first flange in the axial direction, and opened to an outer peripheral surface of the first flange. The second lead wire engaging portion may be constituted from a second through-hole formed in the second flange to pass therethrough in the axial direction, and a second slit formed in the second flange to communicate with the second through-hole, passing through the second flange in the axial direction, and opened in an outer peripheral surface of the second flange. The third lead wire engaging portion may be constituted from a third through-hole formed in the first flange to pass therethrough in the axial direction, and a third slit formed in the first flange to communicate with the third through-hole, passing through the first flange in the axial direction, and opened to the outer peripheral surface of the first flange.
The first slit may be dimensioned so that the plurality of lead wires engaged with the first lead wire engaging portion and passing through the first through-hole may not readily come off from the first slit. The second slit may be dimensioned so that the plurality of lead wires engaged with the second lead wire engaging portion and passing through the second through-hole may not readily come off from the second slit. The third slit may be dimensioned so that the plurality of lead wires engaged with the third lead wire engaging portion and passing through the third through-hole may not readily come off from the third slit. When the first to third lead wire engaging portions are configured in this manner, a plurality of lead wires may be engaged with the first to third lead wire engaging portions merely by inserting the plurality of lead wires through the first to third slits into the first to third through-holes respectively. Thus engagement of the plurality of lead wires is simplified. Further, once the lead wires have been engaged with the engaging portions, that is, the lead wires have been inserted within the first to third through-holes, the lead wires may securely be engaged with the first to third lead wire engaging portions since the lead wires do not readily come off from the first to third slits.
An embodiment of an axial flow fan according to the present invention will be described in detail below with reference to the drawings.
The fan housing 3 includes a first flange 21, a second flange 23, and a cylindrical portion 25. The first flange 21 is formed in an annular shape, provided on one side in an axial direction of a not-illustrated rotary shaft of the axial flow fan, that is, on a side where an after-mentioned discharge port is positioned. As shown in
The second flange 23 is formed in an annular shape on the other side in the axial direction, that is, a side where an after-mentioned suction port is positioned. According to the present embodiment, a taper portion 21c is formed to slope down to the cylindrical portion 25 in a portion of the first flange 21 where an air channel 25 is defined. Eight stationary blades 21d are formed in the taper portion 21c at given intervals in a direction of rotation of the impeller. The second flange 23 has a substantially quadrangular outline shape as seen in the axial direction of
The cylindrical portion 25 is provided between the first flange 21 and the second flange 23. According to the present embodiment, the fan housing 3 has an air channel 26 defined by an inner space IS formed by the first flange 21, the second flange 23 and the cylindrical portion 25. The air channel 26 has a suction port or the suction opening 24 and a discharge port or the discharge opening 22.
In the present embodiment, a side where the first flange 2 of the fan housing 3 is positioned defines a side where the discharge port or the discharge opening 22 of the axial flow fan 1 is positioned. A side where the second flange 23 of the fan housing 3 is positioned defines a side where the suction port or the suction opening 24 of the axial flow fan 1 is positioned. However, positioning of the suction port or the suction opening 24 and a discharge port or the discharge opening 22 are not limited to the configuration of the present embodiment. A side where the first flange is positioned may define a side where the suction port or the suction opening 24 of the axial flow fan 1 is positioned. A side where the second flange is positioned may define a side where the discharge port or the discharge opening 22 of the axial flow fan 1 is positioned.
The impeller 5 including a plurality of blades 6 is disposed inside the air channel 26. The impeller 5 is fixed to the rotor 7 operable to rotate about the rotary shaft, not illustrated. The impeller 5 is rotated inside the air channel 26 by the rotation of the rotor 7 driven by a not-illustrated motor. According to the present embodiment, a not-illustrated stator is provided with respect to the rotor 7. The not-illustrated motor is received inside a motor casing 9 which includes a bottom wall portion 9a located within the first flange 21 and a peripheral wall portion 9b that is formed continuous with the bottom wall portion 9a and extend toward the suction port or the suction opening 24.
As shown in
A first lead wire engaging portion 17 is formed in a connecting portion 21e between the first flange 21 and the web 11d. The first lead wire engaging portion 27 is configured to allow the plurality of lead wires 15 to be engaged therewith and pulled out therefrom to an outer space OS defined between the first flange 21 and the second flange 23 of the fan housing 3. The second lead wire engaging portion 19 is formed in the second flange 23 and configured to allow the plurality of lead wires 15, which have been engaged with the first lead wire engaging portion 17 and pulled out into the outer space OS, to be engaged with the second lead wire engaging portion 19 and then pulled out toward the other side in the axial direction where the second flange 23 is positioned, that is, a side where the suction port is positioned.
The axial flow fan 1 according to the present embodiment further includes a third lead wire engaging portion 27 in addition to the first and second lead wire engaging portions 17 and 19. The third lead wire engaging portion 27 is configured to allow the plurality of lead wires 15, which have been engaged with the first lead wire engaging portion 17 and pulled out to the outer space OS, to be engaged with the third lead wire engaging portion 27 and then pulled out therefrom in the axial direction toward the one side where the first flange 21 is positioned, that is, a side where the discharge port is positioned. As shown in
Accordingly, when the third lead wire engaging portion 27 is formed in addition to the first and second lead wire engaging portions 17 and 19, it becomes possible to pull out the plurality of lead wires 15 not only toward the side where the second flange 23 is positioned, that is, the side in the axial direction of the fan where the suction port is positioned but also toward the side where the first flange 21 is positioned, that is, the side in the axial direction of the fan where the discharge port is positioned. This allows for a wide range of selection for placement of the axial flow fan 1 and wiring of the lead wires 15. In addition, the presence of the third lead wire engaging portion 27 makes it possible to pull out the plurality of lead wires 15 toward the side in the axial direction where the discharge port or the discharge opening 22 is positioned. Thus, it may become possible to solve conventional issues, such as involvement of the lead wires 15 into the impeller 5 due to the presence of the lead wires 15 pulled out in the axial direction to the side where the suction port or the suction opening 24 is positioned, and noise caused by the presence of lead wires 15 on the side where the suction port or the suction opening 24 is positioned.
In particular according to the present embodiment, as shown in
As a result, the plurality of lead wires 15, which are engaged with the second lead wire engaging portion 19 provided on the side of the suction port of the axial flow fan 1, may be engaged with the third lead wire engaging portion 27′ provided on the side of the discharge port of the other axial flow fan 1′ adjacent to the one axial flow fan 1 and also engaged with the second lead wire engaging portion 19′ provided on the side of the suction port of the axial flow fan 1′. Accordingly, the plurality of lead wires 15 of the axial flow fan 1 may be pulled out in the axial direction toward the side of the suction port or the suction opening 24′ of the other axial flow fan 1′ through the third and the second lead wire engaging portions 27′ and 19′ of the other axial flow fan 1′. Refer to
As discussed above, the first flange 21 and the second flange 23 has a substantially quadrangular outline shape as seen in the axial direction. According to the present embodiment, the first and the third lead wire engaging portions 17 and 27 are formed in one side S1 of the quadrangular outline of the first flange 21. Refer to
According to the present embodiment, the first lead wire engaging portion 17 may be constituted from a first through-hole 17a that is formed in the first flange 21 to pass therethrough in the axial direction and to communicate with the groove portion 13 of the web 11d, and a first slit 17b that is formed in the first flange 21 to communicate with the first through-hole 17a, passing through the first flange 21 in the axial direction, and opened in an outer peripheral surface 21f of the first flange 21. Refer to
The first slit 17b may be dimensioned so that the plurality of lead wires 15 engaged with the first lead wire engaging portion 17 and passing through the first through-hole 17a may not readily come off from the first slit 17b. The second slit 19b may be dimensioned so that the plurality of lead wires 15 engaged with the second lead wire engaging portion 19 and passing through the second through-hole 19a may not readily come off form the second slit 19b. The third slit 27b may be dimensioned so that the plurality of lead wires 15 engaged with the third lead wire engaging portion 27 and passing through the third through-hole 27a may not readily come off from the third slit 27b.
More specifically, in the first lead wire engaging portion 17, the first through-hole 17a is a trapezoidal hole as viewed from the side where the first flange 21 is positioned, that is, as viewed from the front of the axial flow fan 1, passing in the axial direction through the portion 21e of the first flange 21. The width of the first slit 17b in an extending direction of the side S1 of the first flange 21 where the portion 21e is provided is smaller than the width of the through-hole 17a. In the second lead wire engaging portion 19, the second through-hole 19a is an elliptical hole in shape with its major axis extending in parallel with an extending direction of the side S2 of the second flange 23. The width of the second slit 19b in the extending direction of the side S2 of the second flange 23 is smaller than the width of the major axis of the second through-hole 19a. In the third lead wire engaging portion 27, the third through-hole 27a is an elliptical hole with its major axis extending in parallel with the extending direction of the side S1 of the first flange 21. The width of the third slit 27b in the extending direction of the side S1 of the first flange 21 is smaller than the width of the major axis of the third through-hole 27a. Configurations of the first, second and third through-holes 17a, 19a and 27a are not limited to those employed in the present embodiment, and may arbitrarily be determined as long as the lead wires 15 may not readily come off from the slits 17b, 19b and 27b.
With such configuration of the first lead wire engaging portion 17, the second lead wire engaging portion and the third lead wire engaging portion 27, the plurality of lead wires 15 may be engaged with the first lead wire engaging portion 17, the second lead wire engaging portion 19, and the third wire engaging portion 27 merely by inserting the plurality of lead wires 15 through the first slit 17b, the second slit 19b and the third slit 27b into the first through-hole 17a, the second through-hole 19a and the third through-hole 27a respectively. Thus engagement of the plurality of lead wires 15 may be simplified. Further, once the lead wires 15 have been engaged with the engaging portions, that is, the lead wires 15 have been inserted within the first to third through-holes 17a, 19a, 27a, the lead wires 15 may securely be engaged with the first to third lead wire engaging portions 17, 19, 27 since the lead wires 15 do not readily come off from the first to third slits 17b, 19b, 27b.
In respect of engagement of the lead wires 15 with the third lead wire engaging portion 27 as shown in
The engagement of the lead wires 15 is not limited to those shown in
According to the present invention, a third lead wire engaging portion is provided in the first flange at a given distance from the first lead wire engaging portion so that a plurality of lead wires pulled out into an outer space between the first flange and the second flange may be engaged with the third lead wire engaging portion and then pulled out toward one side in the axial direction where the first flange is positioned. Accordingly, the lead wires may be pulled out not only to a side where the second flange is positioned but also to a side where the first flange is positioned. Thus, there are many options available how to install or place an axial flow fan and how to guide the lead wires.
Number | Date | Country | Kind |
---|---|---|---|
2008-167032 | Jun 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6174145 | Taniguchi | Jan 2001 | B1 |
6388196 | Liu et al. | May 2002 | B1 |
6511303 | Obara | Jan 2003 | B2 |
7358631 | Morishitahara | Apr 2008 | B2 |
8007233 | Yang et al. | Aug 2011 | B2 |
8007234 | Yoshida | Aug 2011 | B2 |
8616864 | Nakamura et al. | Dec 2013 | B2 |
20070041857 | Fleig | Feb 2007 | A1 |
20070134091 | Chu et al. | Jun 2007 | A1 |
20070274821 | Yoshida | Nov 2007 | A1 |
20080152489 | Alex et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
2886153 | Apr 2007 | CN |
61-17500 | Jan 1986 | JP |
11-072098 | Mar 1999 | JP |
2000-64987 | Mar 2000 | JP |
2007-309313 | Nov 2007 | JP |
Entry |
---|
Chinese Office Action with English Summary Translation, dated May 24, 2013, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20140056742 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13001503 | US | |
Child | 14070719 | US |