The present invention relates to a gas turbine combustor having a flow sleeve and a liner for supplying compressor discharge air to combustor burners and particularly relates to a casing for turning compressor discharge air flowing radially through holes in the flow sleeve in an axial direction for flow in a generally parallel direction relative to the free stream air in the flow sleeve. The invention also relates to methods for turning the flow.
In current combustors, a plurality of openings are provided about the flow sleeve for injecting air in a generally radial direction into the flow sleeve for impingement cooling the liner. The radially injected air is generally normal to the free stream air flowing within the flow sleeve. It will be appreciated that compressor discharge air flows through openings in the impingement sleeve of a transition piece and forms part of a free stream air flow in an aft direction and between the combustion flow sleeve and liner. This air flow mixes with fuel at the aft end of the combustor and the fuel/air mixture is combusted within the liner. The air injected in the radial direction through the flow sleeve openings and into the free stream has a momentum exchange with the axially flowing air and must be accelerated by the axially flowing free stream air until the cross flowing air reaches the free stream velocity. This process causes a net loss in energy.
In certain combustors, it is desirable to impingement cool the liner of the combustor, necessitating the net loss in energy to cool the liner. In other combustors, however, the magnitude of cooling required to cool the liner is such as to not require impingement cooling flows. Consequently, there is a need to provide a mechanism and a method for reducing energy losses due to cross flow while affording cooling of the liner.
In accordance with a preferred aspect of the present invention, the flow sleeve is provided with an inlet which enables the air flowing into the inlet to change direction and enter the free flow stream of compressor discharge air between the liner and flow sleeve in a generally co-flow or coaxial direction, thus eliminating energy losses due to cross flow and accompanying momentum exchange. The inlet includes an annular plenum between the forward end of the flow sleeve and an annular casing about the inside of the flow sleeve. The flow sleeve is provided with a plurality of circumferentially spaced openings for injecting compressor discharge air into the plenum. The casing is provided with a plurality of circumferentially spaced apertures at its aft end for injecting the air from the plenum in a generally axial or co-flow direction with and into the free flow air stream. The inlet thus affords a precise control and metering of the air while simultaneously cooling the liner.
In a preferred embodiment according to the present invention, there is provided a combustor for a gas turbine comprising a combustor housing including a flow liner extending in a generally axial direction and a flow sleeve surrounding and spaced from the flow liner defining a flow path for flowing air in a generally axial direction between the liner and the flow sleeve; and an inlet to the flow sleeve for introducing air into the flow path in substantially the same axial direction as the direction of air flow along the flow path.
In a further preferred embodiment according to the present invention, there is provided a combustor for a gas turbine comprising a combustor housing including a flow liner and a flow sleeve surrounding and spaced from the flow liner defining a flow path therebetween for flowing air generally in a first direction between the liner and the flow sleeve toward one end of the combustor; and an inlet to the flow sleeve for introducing air into the flow path for flow in substantially the first direction and substantially without cross flow between the introduced air and the air flowing along the flow path.
In a further preferred embodiment according to the present invention, there is provided a combustor for a gas turbine having a flow liner, a fuel injector adjacent to one end of the liner and a flow sleeve surrounding and spaced from the liner defining a flow path for flowing air in a direction generally toward the one end, a method of introducing air into the air flowing along the flow path comprising step of injecting air directly into the air flow stream in the general direction toward the one end.
Referring now to the drawing figures, and particularly to
As illustrated in
Referring now to
To introduce compressor discharge air through the flow sleeve 30 in a generally co-flow direction, there is provided an inlet generally designated 40 including an annular interior casing 42 defining with a portion of the flow sleeve at the forward end a plenum 46. It will be appreciated the casing 42 and plenum 46 extend annularly about the interior surface of the flow sleeve 30. Compressor discharge air is introduced into the plenum 46 through a plurality of circumferentially spaced openings 48 in the forward end of the flow sleeve 30 thereby isolating plenum cavity flow 46 from the flow that is migrating aft from region 35 into region 34. It will be appreciated that additional axial spaced openings 48 may also be provided to supply compressor discharge air to the plenum 46. The air injected through openings 48 is uniquely turned within the plenum by the casing 42 for flow through apertures 50 at the aft end of casing 42. As illustrated in
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover any number of various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4211069 | Kalbfuss | Jul 1980 | A |
4362500 | Eriksson et al. | Dec 1982 | A |
4628687 | Strom | Dec 1986 | A |
4719748 | Davis et al. | Jan 1988 | A |
4916906 | Vogt | Apr 1990 | A |
6098397 | Glezer et al. | Aug 2000 | A |
6412268 | Cromer et al. | Jul 2002 | B1 |
6446438 | Kraft et al. | Sep 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20060283189 A1 | Dec 2006 | US |