Axial flow turbine air economizer

Information

  • Patent Grant
  • 6390772
  • Patent Number
    6,390,772
  • Date Filed
    Tuesday, April 4, 2000
    24 years ago
  • Date Issued
    Tuesday, May 21, 2002
    22 years ago
Abstract
Nozzle control apparatus for an axial flow air turbine having an inlet nozzle for air entering the turbine and an associated turbine inlet housing for channeling air flowing to the inlet nozzle for at least partially blocking air flow from the turbine inlet housing to the turbine inlet nozzle. The nozzle control apparatus uses an axially movable annular slider member that is biased to its open position by an annular spring and is moved axially by bleed air pressure exerted on a portion of the annular slider member.
Description




BACKGROUND OF THE INVENTION




Axial flow air turbines can have various uses. One significant use is in an air drive unit incorporated in modern day wide-body aircraft such as the Boeing 747, 767 and 777 aircraft to augment engine driven hydraulic pumps during peak demand periods. The air drive unit also serves to provide hydraulic power during emergency conditions when one or more of the primary engine driven hydraulic pumps are inoperative. An air drive unit includes a turbine gearbox assembly, a modulating valve, a hydraulic pump, and other ancillary components such as a muffler, ducting, controller, and clamps. The turbine gearbox assembly contains the axial flow air turbine, inlet volute, nozzle, exhaust diffuser, gearbox assembly, and hydraulic pump interface.




In operation, engine bleed air flows through the inlet volute and turbine nozzle and drives the axial flow turbine. The turbine power generated by the engine bleed air is transmitted to the hydraulic pump interface through the gearbox. The gearbox allows the turbine to rotate at a much higher speed than the hydraulic pump, thus maximizing turbine efficiency without adversely effecting pump life. It is generally desirable to operate the turbine at nearly constant speed during all operational conditions. Since the engine bleed air pressure and hydraulic load vary during operation, a method for controlling the flow entering the turbine is required for stable, constant speed operation. Flow control currently is typically exerted in one of the following two ways:




1. Bleed air is metered by a modulating valve located upstream of the air turbine inlet volute. This system of control typically utilizes a fixed area nozzle to accelerate air into the axial flow turbine.




2. Bleed air is modulated by variable inlet guide vanes which serve as a variable geometry nozzle to accelerate air into the axial flow turbine. With this method the turbine speed is maintained constant by varying the nozzle area under varying power conditions.




The first system, utilizing a modulating valve, is far simpler than the second, utilizing variable inlet guide vanes. Only one moving part is typically utilized in an air modulating valve, whereas variable inlet guide vanes necessitate synchronized rotation of every nozzle vane. In addition to the actuating mechanism, each of the typically more than twenty nozzle vanes in a variable inlet guide vane system must contain suitable bearing surfaces, a timing gear, and precision shafts. Consequently initial cost of a system employing variable geometry is far greater than that of a system employing a modulating valve. In addition, the reliability of a variable inlet guide vane system is inherently lower than systems employing a modulating valve for turbine control due to the increased complexity and the increased number of parts.




The benefit of using a variable inlet guide vane system is reduced air consumption at normal operating conditions, especially at the sea level take-off condition. At this condition, maximum power must be delivered by the air drive unit to quickly retract the landing gear. At the same time, maximum engine thrust is required, and maximum engine bleed pressure is available. Since engine bleed air is taken directly from the engine compressor, which reduces the available engine thrust, it is desirable to minimize the bleed air consumption when maximum engine thrust is required.




The air drive unit can produce the required power at the sea level take-off condition by utilizing the high pressure supply air and using a small nozzle area to accelerate the flow into the turbine. This approach minimizes the required engine bleed flow rate, and is thus the most desirable in terms of engine performance. However, a primary role of air drive units is to provide power during emergency conditions. The emergency requirement that typically sizes the machine is a low pressure (typically 25%-50% of the sea level take-off pressure), high power condition. To produce high power at low pressure requires a large nozzle area and consequently high bleed air flow consumption.




Since the nozzle area in a variable inlet guide vane system can be controlled, the area is minimized for the sea level take-off condition to minimize bleed air consumption, and maximized for low pressure emergency conditions to produce the required power. Systems employing a modulating valve, however, normally use a fixed area nozzle. Since the low pressure emergency condition requires the largest nozzle area of all operational conditions, the fixed nozzle area in these systems is sized for this requirement. As a result, during the sea level take-off condition, and most operational conditions, systems employing a modulating valve for flow control have a much larger nozzle area than required. As a result, these systems consume more bleed air than similar variable inlet guide vane systems at the same condition (up to 40% more at the sea level take-off condition).




The inlet nozzle air control apparatus invention for an axial flow air turbine solves the problem of excessive air consumption in fixed nozzle systems without the added complexity and cost of a variable inlet guide vane system. Use of the inlet nozzle air control apparatus invention results in optimal flow consumption at two design points, as opposed to the single optimal design point of a fixed area nozzle, and performance equivalent to that of a variable inlet guide vane system at those design points, with far less complexity since only one additional moving part is required. The reduced complexity means improved reliability with equivalent performance. This invention can be successfully employed whenever optimal performance of an axial flow turbine is required at more than one operating condition.




The inlet nozzle air control apparatus invention offers automatic (self actuated) optimal nozzle area selection, with minimal complexity. This allows an axial flow turbine to operate optimally, thus reducing air flow consumption, at more than one design condition. This inlet nozzle air control apparatus invention allows multi point design optimization at a fraction of the cost of variable inlet guide vane systems, and with far greater reliability. Thus, simplicity and cost comparable to the fixed nozzle, modulating valve controlled system, and performance comparable to the complex variable inlet guide vanes controlled system is achieved using the inlet nozzle air control apparatus invention.




SUMMARY OF THE INVENTION




This invention relates to axial flow turbines and more particularly to axial flow turbines having increased flexibility.




Accordingly, it is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that increases the flexibility of the axial flow turbine.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that permits optimal performance of the axial flow turbine.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that permits optimal performance of the axial flow turbine at more than one turbine operating condition.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that permits optimal performance of the axial flow turbine at a plurality of turbine operating design points.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that permits optimal performance of the axial flow turbine at at least two turbine operating design points.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that reduces air consumption.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that permits a reduced nozzle area.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that is reliable.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that has few parts.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that has only one moving part.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that is simple in its operation.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that is easy to operate.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that has reduced complexity.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that has reduced weight.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that has reduced maintenance.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that is easy to manufacture.




It is an object of the invention to provide inlet nozzle air control apparatus for an axial flow turbine that has a low manufacturing cost.




These and other objects will be apparent from the invention that includes inlet nozzle air control apparatus for an axial flow air turbine having an inlet nozzle for air entering the turbine and an associated turbine inlet housing for channeling air to the inlet nozzle comprising means for at least partially blocking air flow from the turbine inlet housing to the turbine inlet nozzle and control means associated with the air flow blocking means for controlling the operation of the blocking means.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will be hereinafter more fully described with reference to the accompanying drawings in which:





FIG. 1

is a perspective sectional view of a portion of an axial flow turbine with the inlet nozzle air control apparatus invention installed and in the non-blocking position;





FIG. 2

is a view of a portion of the structure set forth in

FIG. 1

taken in the direction


2





2


thereof;





FIG. 3

is a view of the structure set forth in

FIG. 2

with the inlet nozzle air control apparatus invention in the blocking position; and





FIG. 4

is a perspective view of a portion of the structure set forth in FIGS.


1


through


3


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring first to

FIG. 1

, the inlet air control apparatus invention is illustrated and is designated generally by the number


10


. The inlet nozzle air control apparatus


10


is illustrated installed in a conventional axial flow air turbine that is designated generally by the number


12


. It will be appreciated that a number of parts that would normally be part of the complete axial flow air turbine have been omitted from the figures that illustrate the axial flow turbine


12


for clarity and since they are not necessary for an understanding of the invention.




The air turbine


12


, as illustrated, has an air turbine inlet housing


14


with a hollow curved tubular shaped interior


16


with an annular exit


18


, an adjacent annular shaped turbine entrance nozzle


20


that has an inner annular entrance area


22


and an outer annular entrance area


24


that are separated by a circular ring


25


and an air turbine rotor


26


with its circumferentially located blades


28


that are located adjacent to the inlet nozzle


20


. The air turbine inlet housing


14


has an outer portion


30


and inner portions


32


and


34


. The portions


30


,


32


, and


34


are secured together in a conventional manner to form the air turbine inlet housing


14


with the interior


16


.




The inner portion


34


has an outer circumferential recess


36


. This recess


36


is partially closed by an inner cylindrical surface


38


on the inside of inner portion


32


and by the inner surface


40


on the outer end


42


of the inner portion


32


. The circumferential recess


36


houses a generally ring shaped slider member


44


that is movable axially in the direction of the axis of rotation A of the rotor


26


.




A circumferential spring


46


is located adjacent to the slider member


44


in position to normally bias the slider member


44


into its open position. The slider member


44


has a forward cylindrical closure portion


48


that is sized and shaped to slide axially back and forth within the cylindrical shaped slot


50


that exists between the inlet housing inner portions


32


and


34


. This slot


50


is located directly adjacent to the annular exit portion


18


of the inlet housing


14


and also, as is apparent in

FIG. 2

, this slot


50


is located substantially opposite the inlet housing exit portion


18


from the circular separator ring


25


located in the annular entrance area


22


of the entrance nozzle


20


.




In addition to the cylindrical closure portion


48


, the slider member


44


also has an adjacently located cylindrical portion


52


that is smaller in diameter than the cylindrical closure portion


48


. The inner end surface


54


provides a resting surface for one end


56


of the spring


46


. The other end


58


of the spring


46


rests on the wall


60


of the recess


36


in the outer circumferential surface of the inlet housing portion


34


. The fact that the end


58


of the spring


46


rests on the wall


60


and the other end rests on the surface


54


of the movable slider member


44


is the reason why the slider member


44


is biased by the spring


46


to its open or rearward position as illustrated in

FIGS. 1 and 2

.




A port


62


is provided in the outer end


42


of the inner portion


32


that is threaded to receive the hose fitting


64


that is in turn connected to the hose or conduit


66


. This hose or conduit


66


is in turn connected to the source of compressed air


68


that in the preferred embodiment would be aircraft engine bleed air. This arrangement permits compressed air to pass from the source of compressed air


68


through the hose


66


, through the fitting


64


that is secured in the port


62


and into the circumferential recess


36


where it exerts pressure on the cylindrical surface


70


of the slider member


44


that can overcome the spring force that is exerted by the end of the spring


56


on the cylindrical surface


54


of the slider member


44


.




The force of compressed air on the cylindrical surface


70


of the slider member


44


can compress the spring


46


and cause the slider member


44


to have to move to the left so that its closure portion


48


passes through the slot


50


and into the annular exit portion


18


of the air turbine inlet housing


14


so that the closure portion


48


of the slider member


44


blocks air flow from the exit portion


18


of the inlet housing


14


into the inner annular entrance area


22


of the turbine entrance nozzle


20


as illustrated in FIG.


3


. When the slider member


44


is in this position, it is clear that its closure portion


48


essentially only permits air to flow from the exit portion


88


of the air turbine inlet housing


14


into the outer entrance area


24


of the turbine entrance nozzle


20


.




A vent


72


is provided from the recess


36


through inner portion


34


of the inlet housing


14


to its interior surface


74


. This vent


72


vents the area of the recess


36


that is occupied by the spring


46


to the outside ambient air. It will also be apparent that a series of sealing rings are provided to be in contact with the slider member


44


. In this connection, the inner portion


34


of the inlet housing


14


has circumferentially located seals


76


and


78


and the inner portion


32


of the inlet housing


14


has a sealing ring


80


. The seals


76


and


80


are located to contact and seal the closure portion


48


of the slider member


44


and the other seal


78


is located in the cylindrical surface of the recess


36


in position to contact the slider member


44


.





FIG. 4

illustrates in greater detail the previously described slider member


44


and the return spring


46


that are important parts of the air inlet control apparatus invention


10


. As illustrated, the slider member


44


has the cylindrical closure portion


48


that is a hollow cylinder. The cylindrical closure portion


48


is also connected to an adjacently located larger diameter hollow cylinder


52


that is sized and shaped to be located around the circular return spring


46


with the end


58


of the spring


46


resting on the wall surface


60


.




The inlet nozzle air control apparatus


10


is manufactured in the following manner. In order to manufacture the inlet nozzle air control apparatus


10


, only relatively minor changes are necessary to the axial flow air turbine


12


. Basically, the only changes are to the air turbine inlet housing


14


. In this connection, the inner portion


34


of the inlet housing


14


is suitably cast and/or machined to provide the outer circumferential recess


36


and the inner portion


32


of the inlet housing


14


is suitably cast and machined to provide the surfaces


38


and


40


so that when these parts


32


and


34


are assembled they provide the closed recess


36


for the slider member


44


and the circular slot


50


for the cylindrical closure portion


48


of the slider member


44


. The inner portions


32


and


34


of the air turbine inlet housing


14


are also suitably machined to accept the sealing rings


76


,


78


, and


80


.




The slider member


44


is typically machined from aluminum using conventional machinery and techniques. The spring


46


is manufactured in a conventional manner from standered spring steel. The circular seals


71


,


78


and


80


are conventional seal rings or piston rings. The assembly of the inlet nozzle air control apparatus


10


is accomplished during assembly of the turbine inlet housing


14


. Prior to the inner portions


32


and


34


being installed the seals


76


,


78


and


80


are installed and then when the portions


32


and


34


are installed the cylindrical slider member


44


and the cylindrical spray are installed in the recess


36


. Also, the fitting


64


of the conduit


66


is threaded into the threaded hole


62


so that pressurized air can be supplied through the conduit


66


to move the slider member


44


.




The air inlet control apparatus invention


10


is used in the following manner. As previously indicated, the air turbine inlet nozzle vanes


28


contain a cylindrical element


25


that separates the inlet nozzle flow area


20


into an outer flow area


24


and an inner flow area


22


. The cylindrical slider member


44


which is incorporated in the adjacent portion of the inlet housing


14


is movable axially from the normally open position as illustrated in

FIGS. 1 and 2

to the closed position as illustrated in FIG.


3


. When the slider member


44


is in the open position, air flow passes through the both the inner and outer sections


22


and


24


of the turbine entrance nozzle


20


. When the slider member


44


is in the closed position, flow can only pass through the outer section


24


of the entrance nozzle


20


.




The slider member


44


is activated by the ambient to bleed air pressure differential since the vent


72


is exposed to ambient air and the port


62


is exposed to pressurized bleed air through the conduit


66


. The slider member


44


is normally in the open position due to the force exerted by the spring


46


and hence the slider member


44


allows full air flow into the air turbine inlet nozzle


20


through both the inner and outer sections


22


and


24


of the nozzle


20


. The slider member


44


is held in this position by the force of the return spring


46


. The pressure differential at which the slider member


44


strokes is controlled by the spring


46


pre-load. Thus, when the pressure differential exceeds the set point pressure determined by the spring


46


, the slider member


44


closes, and air flows only through the outer nozzle area


24


. The outer nozzle area


24


is sized to produce the maximum required power when high bleed air pressure is available to minimize bleed air consumption. The pressure set point is chosen by selecting the appropriate spring


46


such, that all operational requirements are met.




Although the invention has been described in considerable detail with reference to a certain preferred embodiment, it will be understood that variations or modifications may be made within the spirit and scope of the invention as defined in the appended claims.



Claims
  • 1. Inlet nozzle control apparatus for an axial flow air turbine with an air turbine rotor and blades having an axis of rotation and an annular shaped turbine entrance nozzle for air entering said axial flow air turbine having an annular entrance area with an inner annular entrance area and an outer annular entrance area separated by a circular shaped separator ring located around the axis of rotation of said air turbine rotor and blades and being axially displaced on said axis of rotation of said air turbine rotor and blades from said air turbine rotor and blades with the outer annular entrance area being located further from the axis of rotation of said air turbine rotor and blades than the inner annular entrance area comprising: an air turbine inlet housing with a hollow interior with an annular exit portion located adjacent to said annular shaped turbine entrance nozzle, said air turbine inlet housing having a cylindrical shaped slot located adjacent to said annular exit portion of said air turbine inlet housing substantially opposite from said circular shaped separator ring located in said annular entrance area of said turbine entrance nozzle, a generally ring shaped axially movable slider member located in said cylindrical shaped slot located to be movable axially in the direction of the axis of rotation of said air turbine rotor and blades between an open position and a closed position, said slider member having a cylindrical closure portion sized and shaped to slide axially within said cylindrical shaped slot to block air flow from said annular exit portion of said air turbine inlet housing into said inner annular entrance area of said turbine entrance nozzle and only permit air to flow from said annular exit portion of said air turbine inlet housing into said outer entrance area of said turbine entrance nozzle when said closure portion is in said closed position, slider member biasing means located in said turbine inlet housing in position for normally exerting a force on said slider member, a source of compressed air and a conduit connected to said a source of compressed air and to said air turbine inlet housing for permitting compressed air to pass from the source of compressed air through said conduit to said air turbine inlet housing to exert pressure on said slider member to overcome the force exerted by said slider member biasing means on said slider member.
  • 2. The inlet nozzle control apparatus for an axial flow air turbine of claim 1 wherein said source of compressed air comprises aircraft engine bleed air.
  • 3. The inlet nozzle control apparatus for an axial flow air turbine of claim 1 wherein said slider member biasing means is located to bias said slider into said open position.
  • 4. The inlet nozzle control apparatus for an axial flow air turbine of claim 1 wherein said slider member biasing means comprises a spring.
  • 5. The inlet nozzle control apparatus for an axial flow air turbine of claim 4 wherein said spring comprises a circumferential spring.
  • 6. The inlet nozzle control apparatus for an axial flow air turbine of claim 5 wherein said slider member has a cylindrical portion located adjacent to said cylindrical closure portion with a smaller diameter than the diameter of said cylindrical closure portion with the surface between the cylindrical portions located to provide a surface to be exposed to compressed air from said source of compressed air.
  • 7. The inlet nozzle control apparatus for an axial flow air turbine of claim 6 wherein said air turbine inlet housing comprises a plurality of secured together portions and one portion has a circumferential recess forming a portion of the cylindrical shaped slot located in said air turbine inlet housing.
  • 8. The inlet nozzle control apparatus for an axial flow air turbine of claim 1 further comprising a vent located in said air turbine inlet housing.
  • 9. The inlet nozzle control apparatus for an axial flow air turbine of claim 1 further comprising a plurality of sealing rings located in said air turbine inlet housing in position to contact said slider member.
US Referenced Citations (6)
Number Name Date Kind
3270495 Connor Sep 1966 A
3557549 Webster Jan 1971 A
4586336 Hörler May 1986 A
4776168 Woollenweber Oct 1988 A
4886416 Wunderlich Dec 1989 A
5454225 Sumser et al. Oct 1995 A