The invention relates to a turbo compressor of the axial flow type comprising a stator with at least one axial section including a circumferential array of flow directing guide vanes and a rotor with at least one axial section including a circumferential array of rotor blades, wherein between the guide vanes and the rotor blades and between an inner peripheral wall and an outer peripheral wall there are formed parallel flow paths, and between successive rotor blades there are formed rotor flow passages through which the flow paths extend.
In prior art compressors of the above type there is a problem of obtaining an increased pressure ratio across each compressor stage and/or an increased efficiency. A factor which is limiting and crucial for these objectives is the mean velocity of the air flow through the compressor. It is a well known fact that an increased air flow velocity would give a higher pressure ratio across each compressor stage and/or an increased efficiency. In prior art compressors, however, the flow velocity is kept well below the sonic velocity, i.e. a Mach number below 1.0, usually around 0.7, because at super sonic velocity there arise shock waves in the air flow which are difficult to avoid and which are detrimental to the pressure ratio and the compressor efficiency. By keeping the Mach number around 0.7 there is ensured that the Mach number 1.0 will not be reached and that no shock waves will arise.
The reason for using such a large “safety” margin of 0.7-1.0 in Mach number is that in prior art compressors the air flow velocity normally increases locally at the downstream ends of the flow paths of the stator or rotor sections. The reason for such velocity increase is that when departing from a flow path between two guide vanes or two drive blades the air flow is subjected to a tangential contraction due to a change in flow direction. Such an increase of the flow velocity might bring the air flow velocity up to a Mach number around 1.0, and undesired shock waves might arise in the air flow. In order to make sure that sonic velocity is not reached at any location in the compressor, the air flow velocity is kept down to the “safe” Mach number 0.7.
There are transonic compressors working at velocities exceeding Mach number 1.0 and by which special arrangements have been made to avoid the negative influence of shock waves. However, that type of compressor would also benefit from lower air flow losses in the stator and rotor flow paths in accordance with the invention.
The main object of the invention is to accomplish a compressor of the above type working at subsonic air flow velocities and where the air flow passages through the compressor are improved in such a way that the mean air flow velocity through the stator and rotor sections may be increased considerably without risking the Mach number reaching the 1.0 level.
Further objects and advantages of the invention will appear from the following specification and claims.
A preferred embodiment of the invention is hereinafter described in detail with reference to the accompanying drawing.
On the drawing
In
When reaching a section a2 at a certain distance upstream of the leading edge of the second rotor blade B or slightly downstream of the leading edge of the first rotor blade A the flow path passes through a diffusor region C which extends in the flow direction to a section a3 approximately at the leading edge of the second rotor blade B. Accordingly, the diffusor region C has an entrance section a2 and an exit section a3, wherein the entrance section a2 has a cross sectional area which is smaller than that of the exit section a3. The entrance section a2 of the diffusor region C is also the narrowest cross section of the entire flow path between a1 and a4.
Downstream of the diffusor region C, the flow path extends through a transition region D which has a substantially non-increasing or slightly decreasing cross sectional area all the way from section a3 to an exit section a4. To compensate for a downstream increasing distance between the rotor blades A and B the radial extent of the rotor blades, i.e. the radial distance between the inner peripheral wall 28 and the outer peripheral wall 29, has to be reduced so as to keep the cross sectional area substantially constant throughout the transition region D. See
Upstream of the diffusor region C, the flow path has a substantially constant cross sectional area, from an initial section a1 to the diffusor region entrance section a2 so as to generate a non-increasing flow velocity. As illustrated in
By locating the diffusor region C of each flow path upstream of the flow deflecting transition region D between two successive rotor blades A, B there is accomplished a reduction in flow velocity and, hence, a reduction of the flow losses during the flow path deflection between the rotor blades A, B. This means an improved efficiency of the compressor.
In order to ensure a good efficiency of the compressor the flow velocity shall be equally high over the entire radial extent of each rotor blade. This is accomplished by employing a guide vane configuration in the initial compressor stage such that each guide vane 10 has a different flow deflection angle at its top end compared to its bottom end. See
In
In
Between the stator sections and the rotor sections there are provided axial gaps which form annular air flow passages 22, 23 and 24.
The main character of the air flow passage through the compressor is successively converging from the inlet nozzle end toward the outlet end. As illustrated in
A characteristic feature of the invention is the provision of the axial gaps between the stator and rotor sections forming the flow passages 22, 23 and 24. The reason for introducing these axially extended and radially diverging passages 22, 23 and 24 is to accomplish a velocity reducing diffusor region with the purpose to reduce flow losses and increase the compressor efficiency.
As illustrated in
This undesirable acceleration of the air flow is omitted by increasing the available cross sectional area in the flow passage, i.e. by the introduction of the intermediate and radially diverging flow passages 22, 23 and 24. By increasing the radial extent of these passages by at least 10% there is obtained an improved compressor efficiency. For obtaining a substantial increase in the compressor efficiency the increase in the radial extent of the flow passages 22, 23 and 24 should be at least 20%. In the illustrated example, the radial extent of the passages increases from h1 at the entrance to h2 at the exit end.
For obtaining a favourable shape of the air flow path through the compressor, the increase in radial extent of the intermediate passages 22, 23 and 24 has to be accomplished over a certain passage length. Therefore, the passages 22, 23 and 24 should have an axial length exceeding 30% of the rotor blade and guide vane length, respectively. Depending on the radial extent of the blades and vanes the passage length could be 50% or more of the length of the blades and vanes, respectively.
Number | Date | Country | Kind |
---|---|---|---|
0004001-4 | Nov 2000 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE01/02409 | 11/2/2001 | WO |