This invention concerns an axial impeller with enhanced flow equipped with blades that are inclined in the plane of rotation of the impeller and a hub having small dimensions.
The impeller according to the present invention may be used for various applications, for example, for moving air through a heat exchanger or radiator of an engine cooling system for a vehicle or similar apparatus; or for moving air through a heat exchanger for heating equipment and/or through air conditioning evaporators used in vehicle cabins.
Furthermore, the impeller according to the present invention may be used to move air in fixed air conditioning or heating equipment in homes.
Impellers of this type must meet various requirements, including: low noise, high efficiency, compact size, ability to achieve good head (or pressure) values and flow.
In order obtain a good flow of air by using impellers whose dimensions are small, it may be necessary to extend the blades towards the centre of the impeller itself, thereby increasing the flow in the central portion.
An impeller of this type is described in U.S. Pat. No. 6,126,395; its compact impeller features an extension of the blades towards the centre of the impeller, the blades are connected and overlap a hub.
The latter presents a curved area containing the stator of the actuator motor, while each blade contains a permanent magnet that works with the stator in order to create the torque necessary for rotation.
Due to the structure of the hub surrounding the stator it is difficult to change the type and size of the motor that rotationally drives the impeller.
Depending on the type of application and in order to obtain the best performance, it may be necessary to fit impellers of a certain size with electric motors of different sizes and power ratings.
In particular, to meet standardization requirements, it may be necessary to use motors with diameters that are relatively wide on impellers that are compact in size.
One aim of the present invention is to produce an impeller that features enhanced air flow, whose overall dimensions are generally small.
According to one aspect, the present invention provides an axial impeller as defined in claim 1.
The dependent claims refer to preferred, advantageous embodiments of the invention.
The accompanying drawings illustrate an embodiment of the present invention without limiting the scope of its application, in which:
a shows a perspective view of a detail of a variation of the impeller according to the present invention;
As shown in the accompanying drawings, the impeller 1 turns about an axis 2, in a plane XY, and comprises a central hub 3 with diameter D1 to which a plurality of blades 4 are attached, which are curved in the plane XY of rotation of the impeller 1.
The impeller 1 is driven by an electric motor 3a, having a diameter D2, which in general is different from the diameter D1 of the hub 3 and, more specifically, the motor 3a has a diameter D2 that is greater than the diameter D1 of the hub 3, as a result of which the blades 4 overlap the motor 3a.
The blades 4 have a base 5, a tip 6 and are delimited by a concave leading edge 7 and a convex trailing edge 8.
In order to achieve the best results in terms of efficiency, flow and air pressure, the invention specifies that the impeller 1 should rotate in accordance with direction of rotation V, shown in
In the example of
The general geometric features of the blade 4 are defined in relation to a theoretical hub of 55 mm in diameter, that is, the blade 4, has a minimum radius of Rmin=27.5 mm at base 5, and an external diameter of 190 mm, that is, it has a maximum radius of Rmax=95 mm at the tip 6, and as a result the blade 4 has a theoretical radial extension of 67.5 mm
As will be seen below, the hub 3 may have a different size, that is, it may be larger, in which case the blade 4 will be truncated at the effective diameter of the hub 3.
Since the blade 4 has a minimum radius of Rmin=27, 5 mm and a maximum radius of Rmax=95 mm, then, for the leading edge 7, the radius R1 at which a change of circular arc occurs corresponds to approximately half (or 50%) of the radial extension of the leading edge 7, that is, 67.5 mm, as specified above.
The portion 9 of the leading edge 7, which is closer to the base 5, is defined by a circular arc with a radius equal to approximately 53% of the radius Rmax, and the portion 10 of the leading edge 7, closer to the tip 6, is defined by a circular arc segment with a radius equal to approximately 47% of the radius Rmax of the blade 4.
For the trailing edge 8, the radius R2 at which the change in the circular arc occurs is approximately one third (or 33%) of the radial extension of the leading edge, namely 67.5 mm
The portion 11 of the trailing edge 8, closer to the base 5, is defined by an arc with a radius equal to approximately 30% of the radius Rmax of the blade 4; the portion 12 of the trailing edge 8, closer to the tip 6, is defined by an arc with a radius equal to approximately 49% of the radius Rmax of the blade 4.
The dimensions as percentages are shown in table 2 below:
Satisfactory results were achieved in terms of flow, pressure and noise, even with values around these percentage dimensions. In particular, in accordance with the information set out above in percentage terms, it would be possible to achieve variations of plus or minus 10% of the dimensions indicated above.
The percentage ranges in relation to the dimensions are shown in table 3 below:
For the edges 7, 8 of the blade 4 in the area of the change in the circular arc, an appropriate connection may be provided so that the curve formed by the two edges 7, 8 is smooth and without cusps.
As regards the angular extension or width of the blades, again with reference to
In this case as well, satisfactory results were obtained in terms of flow, pressure and noise, with values for angles B1, B2 around these values. In particular, it would be possible to achieve variations of plus of minus 10% of these angles; thus, angle B1 may vary from 36.9 to 45.1 degrees while angle B2 may vary from 33.3 to 40.7 degrees.
In general, in view of the plastic material from which impellers are made, all of the dimensions and angles may vary by plus or minus 5% of the indicated values.
Considering the respective bisectors of angles B1, B2 and following the direction of rotation V of impeller 1, the tip 6 leads the base 5 by an angle B3 of approximately 21 degrees.
Other angles that are a feature of the blade 4 are angles B4, B5, B6, B7 (
There may be between four and nine blades 4 and, in accordance with the preferred embodiment, there are seven blades 4 arranged in accordance with differing angles.
The angles between one blade and the next—considering for example the corresponding leading edge 7 or trailing edge 8—are: 50.7; 106.0; 156.5; 205.2; 257;5; 312.9 (in degrees).
Using these angles provides an advantage with regard to noise, while the impeller 1 remains completely balanced both statically and dynamically.
Each blade 4 is made of a series of aerodynamic profiles that are connected progressively starting from the base 5 to the tip 6.
Profiles 13-19 are also defined by the geometric features exemplified in
Each profile 13-19 is furthermore characterized by two angles of incidence BLE, BTE at the leading edge and at the trailing edge, and these angles are formed by their respective tangents to the centre line L1 at the point of intersection with the leading edge and with the trailing edge and a respective straight line perpendicular to the plane XY through the corresponding intersection points.
Table 4 below shows, with reference to the seven profiles 13-19, the angles of leading edge BLE and of trailing edge BTE, the length of the centre line L1 and of the chord L2 of the profiles of a blade 4.
It should be noted that the thickness of each profile 13-19, in accordance with the typical shape of wing profiles, initially increases, and reaches a maximum value of S-MAX at around 20% of the length of the centre line L1, and from there progressively decreases up to the trailing edge 8.
In percentage terms, the thickness S-MAX lies between 2.26% and 2.42% of the radius Rmax; the thickness of the profiles is distributed symmetrically about the centre line L1.
The positions of profiles 13-19 relative to the radial extension of a blade 4 and the respective values of the thickness in relation to their position with respect to the centre line L1 are shown in table 5 below.
Table 6 below shows the actual thickness values in mm in relation to their position relative to the centre line L1 for each profile 13-19 referring to the embodiment illustrated in the drawings.
Preferably, profiles 13-19 are delimited by an elliptical connection, on the side of the leading edge 7, and by a truncation effected by a straight segment, on the side of the trailing edge 8.
As indicated previously, important features of the impeller 1 in accordance with this invention are provided by hub 3. The latter has a limited thickness and a diameter that is smaller than the diameter of motor 3a.
Between the hub 3 and each blade 4 there is also a box-shaped portion 20 which provides a connection, at least partially, between the hub 3 and each blade 4. For example, in the case illustrated in the drawings seven box-shaped portions 20 are shown, that is to say, the same number of portions as there are blades 4, which in turn are partially and directly attached to the hub 3 in the area near the leading edge 7.
The portions 20 match the external shape of the electric motor 3a and in general provide a seat 21 for the latter. The electric motor 3a is therefore partially contained within this seat 21 and accordingly it can be larger than-the hub 3.
The seat 21 has a diameter that is slightly greater than the diameter D2 of the motor 3a in order to allow the impeller 1 to rotate and also to accommodate motors whose diameters are slightly different.
It should be noted that, because the hub 3 is discoidal and the blades 4 have an angle of incidence at the base 5 that is relatively high, in the part near the trailing edge 8, the blades 4, cannot be attached directly to the hub 3.
In fact, the part near the trailing edge 8 is located in a position that is axially shifted with respect to the hub disk 3. The box-shaped portions 20 therefore enable a connection to be made between the hub 3 and the proximate part of the trailing edge 8 of the blades 4 and also to achieve a certain degree of stiffening of the blade 4 in the base 5.
In accordance with a variation of the invention shown in
In this embodiment, the portion 20a does not specifically define a seat for the electric motor, which may have dimensions (in particular the diameter) that are comparable or smaller than those of the hub 3.
There is however, an increase in the airflow generated by the blades 4, because the discoidal shape of the hub 3 causes an increase in the section through which the airflow passes compared to a traditional solution in which the hub is equipped with a lateral skirt.
In the examples that are illustrated, the hub 3 has a diameter D1 of 75 mm, while the motor 3a has a diameter D2 of 100 mm
The seat 21 has a diameter of approximately 105 mm in order to accommodate the motor 3a. Considering the data provided above, with regard to the blade 4, the latter is truncated at the base 5 to a diameter D1 of 75 mm, that is, to a radius of 37.5 mm, and, in the proximate part of the trailing edge 8, it is furthermore partially replaced by the portion 20.
Although the motor 3a overlaps the proximate part of the leading edge 7, it contributes to enhancing the airflow created by the impeller 1 and performance in general.
In the secondhand third embodiments, shown in
The third embodiment in
The impeller provided by this invention achieves numerous advantages.
As previously indicated, the discoidal shape without a lateral skirt of hub 3 causes an increase in the section through which the airflow passes and accordingly an increase in the flow itself.
Furthermore, even the blades that extend towards the centre of the impeller increase the airflow.
The seat created by the box-shaped portions 20 allows electric motors of a larger diameter to be fitted, and in particular it is possible to fit larger electric motors that provide a greater torque.
Accordingly it is possible to find the correct coupling between the impeller and electric motor, using an existing electric motor that generates the torque necessary for a certain type of impeller.
In this way it is possible to avoid the necessity of designing a new electric motor adapted in size to fit the impeller hub.
Furthermore, the lack of a lateral skirt in the hub and the extension of the blades towards the centre of the impeller, promotes the cooling of the electric motor.
The invention as described above may be modified and varied without departing from the scope of the inventive concept is defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
BO2004A0468 | Jul 2004 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2005/002168 | 7/18/2005 | WO | 00 | 4/3/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/011036 | 2/2/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3127093 | Sudrow | Mar 1964 | A |
3334807 | McMahan | Aug 1967 | A |
6659724 | Takeuchi et al. | Dec 2003 | B2 |
Number | Date | Country |
---|---|---|
0 557 239 | Aug 1993 | EP |
0 945 625 | Sep 1999 | EP |
1 016 788 | Jul 2000 | EP |
Number | Date | Country | |
---|---|---|---|
20080044292 A1 | Feb 2008 | US |