1. Field of the Invention
The present invention relates generally to membrane filtration systems and more particularly to seals used in spiral membrane elements of filtration systems.
2. Description of Related Art
Certain types of filtration systems used for removing chemical contaminants and organisms from water comprise one or more filtration elements that are sealed within an enclosure. The enclosure may comprise a canister, a drum and/or a pipe. In particular, filtration systems used for large-scale water treatment can include a series of elements that connect together within a pipe like structure and which direct an inflow of contaminated or impure water through a filter material and onto an outflow pipe or channel. In the example shown in
These filtration elements function as membrane filters. Unlike conventional batch mode filtration systems, the described filtration system operates as continuous steady state process. As such the total of all material entering in the feed stream 15 is substantially equal to the summation of all material leaving the filtration device in the two exit streams 14 and 16. Such systems may be used in applications that deliver drinking water, clean or treat wastewater and/or storm water, extract water from sludge, and/or desalinate water such as sea water; in these applications, the dilute permeate stream 14 is the principal product of the system. Conversely the concentrate stream 16 may provide the principal product where the objective is to recover or concentrate a valuable solute.
Spiral membrane elements 10 are used as a means of packaging flat sheet, reverse osmosis membrane 102 in useful separation applications. These elements are typically loaded end to end in a cylindrical housing 21 as shown in
This sealing mechanism can be accomplished using seal plates 11 (shown in more detail in
Systems and methods according to certain aspects of the invention may be employed to seal a spiral membrane element of a filtration system. A seal can be formed using a first seal plate for capping the spiral membrane element and having a substantially planar facing configured to engage a corresponding face of a second seal plate of an adjacent spiral membrane element. The faces of the first and second seal plates typically have complementary profiles that yield an intermeshed contact of the seal plates when the spiral membrane element is coupled to the adjacent spiral membrane element. The intermeshed contact creates a tortuous flow path from inside the spiral membrane element to the outside of the spiral membrane element, thereby sealing the spiral membrane element at the point of coupling with the adjacent spiral membrane element. Resistance to flow through the seal can be increased and, consequently, the degree of leakage allowed by the seal in operation can be reduced by making the tortuous path more labyrinthine.
Thus, the intermeshed contact may produce a path that has multiple turns, corners, steps, and so on. For example, an intermeshed contact can be formed using complementary stepped surfaces of the spiral membrane element and the adjacent spiral membrane element. The stepped profiles may be formed with right angled edges for one or more steps and/or the profiles may be v-shaped in form.
According to certain aspects of the invention a plurality of the spiral membrane elements can be connected sequentially within a cylindrical housing, with the feed end of the cylindrical housing being sealed with a radial seal. A radial seal can be provided by an annular element installed in a groove of a seal plate.
According to certain aspects of the invention, the spiral membrane element can be coupled to one or more adjacent spiral membrane elements using the seal plates described herein. Coupling can be maintained by a latching mechanism. In one example, the latching mechanism comprises a pawl that is provided on the spiral membrane element and a receiving groove provided on the adjacent spiral membrane element. The latching mechanism is typically engaged before the spiral membrane element and the adjacent spiral membrane element are inserted into the cylindrical housing. The latching mechanism may be configured such that the cylindrical housing prevents disengagement of the latching mechanism while the coupling between adjacent spiral membrane elements remains within the cylindrical housing.
Embodiments of the present invention will now be described in detail with reference to the drawings, which are provided as illustrative examples so as to enable those skilled in the art to practice the invention. Notably, the figures and examples below are not meant to limit the scope of the present invention to a single embodiment, but other embodiments are possible by way of interchange of some or all of the described or illustrated elements. Wherever convenient, the same reference numbers will be used throughout the drawings to refer to same or like parts. Where certain elements of these embodiments can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present invention will be described, and detailed descriptions of other portions of such known components will be omitted so as not to obscure the invention. In the present specification, an embodiment showing a singular component should not be considered limiting; rather, the invention is intended to encompass other embodiments including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein. Moreover, applicants do not intend for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such. Further, the present invention encompasses present and future known equivalents to the components referred to herein by way of illustration.
Certain embodiments of the invention provide systems, apparatus and methods for providing axial seals in membrane filtration systems. In one example, membrane filtration systems can be adapted according to certain aspects of the invention such that pairs of adjacent spiral elements 10, 10′ are sealed using an axial seal typically located on one or more faces 200 of a seal plate 11 shown in
Certain embodiments of the invention employ plural spiral elements, including elements 10 and 10′, which are joined in series to provide a desired “column length” of filtration elements 10 and 10′ using seal plates 32. The seal plates operate to couple adjacent filtration elements 10 and 10′ and are bonded or otherwise fixed to a filtration core. Typically, the plates of the pair of complementary seal plates are fixed to opposite ends of a filtration element 10. The filtration elements can be assembled by matching complementary ends of adjacent filtration elements 10 and 10′.
The spiral elements 10 and 10′ are typically fitted within a cylindrical housing 21 and are joined to one another inside the housing 21.
In certain embodiments, sealing is accomplished using intermeshing surfaces 38 and 39 on the axial faces of seal plates 32 and 36. The intermeshing surfaces 38 and 39 are configured to create a tortuous flow path from the pressurized inner portion of spiral elements 10 and 10′ externally into a space between spiral elements 10 and 10′ and cylindrical housing 21. An example of a tortuous flow path can be appreciated by viewing the interface of adjacent seal plates 40 and 49 as shown in detail sections 4A and 4B of
In another example shown in
As the tortuous flow path is made more labyrinthine, the resistance to flow through the seal is typically increased. Thus, flow from inside the spiral membrane adjacent elements 10 and 10′ to the space surrounding the spiral membrane elements 10 and 10′ decreases, thereby providing improved sealing of the spiral membrane elements 10 and 10′ at the point of their coupling. A labyrinth may be created using a tortuous path that has multiple turns, corners, steps, and so on. For example, an intermeshed contact can be formed using complementary toothed and/or stepped surfaces of the spiral membrane element and the adjacent spiral membrane element. The stepped profiles may be formed with right angled edges for one or more steps or teeth and/or the profiles may be v-shaped in form. It will be appreciated that this inside to outside flow, or “leakage,” need not be zero. In fact it is often desirable for this flow to have some minimum value to prevent stagnation within the tortuous path and/or the space surrounding elements 10 and 10′, and to permit air removal during startup operations. Conventional systems achieve such bleeding by providing, in the seal plate, features such as holes or grooves to provide a controlled flow path around the sealing element itself. Certain embodiments of the present invention achieve controlled leakage through the design of the tortuous path provided by the intermeshed contact surfaces 38 and 39.
Typically, the fluid flow design enabled by the present invention can eliminate or reduce the need for elastomeric sealing materials used at the axial face 200 of the seal plate 11 and typically reduces the number of radial seals 25 required for each component within a housing 21. Most conventional filtration systems contain as many as 8 individual elements within a single housing 21, with a commensurate number of radial seals 25 added for each element. The reduction in seals 25 directly contacting the wall of an enclosure 21 can lead to a significant reduction in drag force within the filtration system. Moreover, the removal of a significant portion of the axial seals 25 can ease loading and unloading of the spiral elements 10 and 10′. Specifically, an entry radial seal 25 can be provided in a manner that permits the seal plate 11 to move easily in either direction along the axis of the housing 21, thereby facilitating installation and maintenance of filtration elements 10 in spiral membrane filtration systems. These advantages are multiplied as the diameter of the enclosure 21 and spiral elements 10 increases.
Referring again to
In certain embodiments, seal plates 40 and 49 optionally comprise a locking or latching mechanism to keep adjacent spiral elements 10 and 10′ in close contact, thereby optimizing the seal provided by the labyrinthine interface between seal plates 40 and 49. Section 4A of
In one embodiment, seal plate 49 comprises a latch, pawl, hook or other extension 47 on or near an outer surface of seal plate 49, while seal plate 40 comprises a receiving depression, an eye or other catch 470 on or near an outer surface of seal plate 40. As the pair of seal plates 40, 49 is brought together, one plate 40 or 49 can be rotated to align latching elements 47 and 470 and/or to align and orient the raised surfaces 44. In the example shown in
The foregoing descriptions of the invention are intended to be illustrative and not limiting. For example, those skilled in the art will appreciate that the invention can be practiced with various combinations of the functionalities and capabilities described above, and can include fewer or additional components than described above. For example, the described seals can be used in a variety of filtration systems including systems that employ filter elements that comprise hollow fiber, tubular, etc. Certain additional aspects and features of the invention are further set forth below, and can be obtained using the functionalities and components described in more detail above, as will be appreciated by those skilled in the art after being taught by the present disclosure.
Certain embodiments of the invention provide systems and methods for sealing a spiral membrane element of a filtration system. Some of these embodiments comprise a seal formed using a first seal plate for capping the spiral membrane element and having a substantially planar facing configured to engage a corresponding face of a second seal plate of an adjacent spiral membrane element. In some of these embodiments, the faces of the first and second seal plates have complementary profiles that provide an intermeshed contact of the seal plates when the spiral membrane element is coupled to the adjacent spiral membrane element. In some of these embodiments, the intermeshed contact creates a tortuous flow path from inside the spiral membrane element to the outside of the spiral membrane element, thereby sealing the spiral membrane element at the point of coupling with the adjacent spiral membrane element.
In some of these embodiments, the intermeshed contact is formed by complementary stepped surfaces of the spiral membrane element and the adjacent spiral membrane element. In some of these embodiments, the profiles are v-shaped. In some of these embodiments, the profiles are stepped, each step formed with a right angled edge. In some of these embodiments, plural spiral membrane elements are connected sequentially within a cylindrical housing. In some of these embodiments, the ends of the cylindrical housing are sealed with radial seals. In some of these embodiments, the radial seal is provided by an annular element installed in a groove of a seal plate. In some of these embodiments, the spiral membrane element is coupled to the adjacent spiral membrane element, and wherein the coupling is maintained by a latching mechanism. In some of these embodiments, the latching mechanism comprises a pawl that is provided on the spiral membrane element and a receiving groove provided on the adjacent spiral membrane element. In some of these embodiments, the latching mechanism is engaged before the spiral membrane element and the adjacent spiral membrane element are inserted into the cylindrical housing. In some of these embodiments, the cylindrical housing prevents disengagement of the latching mechanism while the spiral membrane element and the adjacent spiral membrane element remain within the cylindrical housing.
Certain embodiments of the invention provide a seal plate operative to seal a spiral membrane element of a filtration system. In certain embodiments, the seal plates provide hermaphroditic sealing of the filtration elements. Certain of these embodiments comprise a rim supported around a central channel and defining a second channel located between the central channel and the second channel. In certain embodiments, the rim has an axial surface substantially aligned with a plane perpendicular to an axis of the central channel. In certain embodiments, a portion of the axial surface has a texture. In certain embodiments, the texture having a pattern that is complementary to the texture of a portion of a corresponding axial surface of a second seal plate. In certain embodiments, the textures of the axial surfaces of the seal plate and the second seal plate are configured to intermesh when the seal plates are in contact. In certain embodiments, the intermeshed textures create a tortuous path between fluids in the second channel and a space external to the rim. In certain embodiments, the textures of the axial surfaces of the seal plate and the second seal plate comprise complementary patterns extending radially along the axial surfaces of the seal plate and the second seal plate. In certain embodiments, the complementary patterns comprise a substantially square stepped pattern. In certain embodiments, the complementary patterns comprise v-shaped patterns. In certain embodiments, the complementary patterns comprise valleys and trapezoidal peaks. In certain embodiments, the complementary patterns include a registration feature configured to ease alignment of the seal plate and the second seal plate.
Certain of these embodiments comprise a plurality of radial surfaces located at the periphery of the rim. In certain embodiments, the radial surfaces are configured to center the seal plate within a cylindrical enclosure. In certain embodiments, the seal plate is bonded to an inflow end of the spiral membrane element such that a portion of a fluid introduced through the second channel is filtered by the spiral membrane element and is thence conducted to the central channel. Certain of these embodiments comprise a latch operative to maintain the seal plate in close contact with the second seal plate. In certain embodiments, a portion of the latch is provided on a radial external surface of the rim. In certain embodiments, the latch comprises a pawl that is fixed to the radial external surface of the rim and configured to engage a receiving groove provided on a corresponding radial external surface of the second seal plate. In certain embodiments, the latch operates as a spacer configured to maintain the seal plate in substantial coaxial alignment with a cylindrical housing that encloses the spiral membrane element.
Certain embodiments of the invention provide a filtration element. Certain of these embodiments comprise a cylindrical filtration core surrounding a collection channel that collects a filtrate from the core. Certain of these embodiments comprise a pair of seal plates bonded at opposite ends of the core. In certain embodiments, each seal plate comprises an annular rim having an axial surface coincident with a plane perpendicular to the annular rim's axis. In certain embodiments, each seal plate comprises a textured band provided ringing a portion of the axial surface and configured to intermesh with a corresponding textured band of another seal plate when the seal plates are in contact. In certain embodiments, the intermeshed textured bands create a labyrinth seal that substantially seals the core from a space external to the rim. In certain embodiments, the textured band of each seal plate includes a portion having a texture pattern that is configured to fit a complementary texture pattern provided on another seal plate. In certain embodiments, the textured band of each seal plate defines a plurality of areas that have pairs of complementary patterns arranged such that the textured band of each seal plate meshes with the textured band of an identical opposing seal plate on an adjacent filtration element, when the each seal plate and the opposing seal plate are in a predetermined alignment with one another.
Certain embodiments of the invention provide filtration systems and methods. Certain of these embodiments comprise an enclosure. Certain of these embodiments comprise a plurality of filtration elements connected end-to-end within the enclosure. In certain embodiments, each filtration element comprises a cylindrical filtration core surrounding a collection channel that collects a filtrate from the filtration core. In certain embodiments, each filtration element comprises a pair of seal plates. In certain embodiments, each of the pair of seal plates is bonded at different ends of the core. In certain embodiments, each seal plate has a rim coaxial with the collection channel. In certain embodiments, the rim has an axial surface substantially aligned with a plane perpendicular to an axis of the each seal plates. In certain embodiments, the pair of seal plates have textured patterns formed on their respective surfaces that are complementary and configured to intermesh with one another when the seal plates are in contact. In certain embodiments, the intermeshed textures create a tortuous path substantially sealing unfiltered fluid directed to the core from a space external to the rim.
In certain embodiments, the intermeshed textures comprise complementary patterns extending radially along the axial surfaces of the seal plates. In certain embodiments, the intermeshed textures comprise complementary patterns that include one or more of a stepped pattern and a v-shaped pattern. In certain embodiments, the intermeshed textures comprise one or more of a square valley, a square peak, a trapezoidal valley and a trapezoidal peak. In certain embodiments, the intermeshed textures comprise one or more registration features that ease alignment of adjacent filtration elements. Certain of these embodiments comprise a plurality of radial surfaces located at the periphery of the rims. In certain embodiments, the radial surfaces center the seal plate within the enclosure. Certain of these embodiments comprise a latch operative to maintain adjacent filtration elements in close contact with each other. In certain embodiments, the latch is embodied in one or more of adjacent seal plates.
In certain embodiments, the patterned textures extend radially along the axial surfaces of the seal plates. In certain embodiments, the patterned texture of each seal plate includes two complementary patterns that are arranged symmetrically on the each seal plate such that each of the two patterns aligns with its complement on the other seal plate when the pair of seal plates are in a desired alignment. In certain embodiments, the patterns comprise one or more of a stepped pattern and a v-shaped pattern. In certain embodiments, the patterns comprise one or more of a rectangular pattern and a trapezoidal pattern. In certain embodiments, the complementary patterns comprise a registration feature that facilitates the desired alignment of adjacent seal plates. Certain of these embodiments comprise a plurality of radial surfaces located at the periphery of the rims, wherein the radial surfaces center the seal plate within the enclosure. Certain of these embodiments comprise a latch operative to maintain adjacent filtration elements in close contact with each other, wherein the latch is embodied in one or more of adjacent seal plates.
Although the present invention has been described with reference to specific exemplary embodiments, it will be evident to one of ordinary skill in the art that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
The present application claims priority from U.S. Provisional Patent Application No. 61/250,765 filed Oct. 12, 2009, entitled “Axial Labyrinth Seal for Filtration Systems,” and from U.S. Provisional Patent Application No. 61/250,771 filed Oct. 12, 2009, entitled “Radial Split Ring Seal For Filtration Systems,” which applications are expressly incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
61250765 | Oct 2009 | US | |
61250771 | Oct 2009 | US |