The present disclosure relates to hydraulic pumps or motors that are used to power lifting cylinders and the like. Specifically, the present disclosure relates to a mounting configuration for such pumps or motors that allows a shaft of the pump or motor to accommodate increased torque.
Engine assemblies often employ hydraulic pumps or motors that provide hydraulic oil at high pressures, or convert hydraulic oil at high pressures or high flow rates to high torque supplied by the shaft. Some hydraulic pumps or motors are coupled to one or more lifting cylinders on a mine hauling truck or the like for lifting and lowering its bed. Adhesion of material such as oil sand ore may lead to sticking of these lifting cylinders. This may lead to increased stress on the lifting cylinders and lead to counterbalance valve instability. Using a bigger or more powerful pump may help alleviate these problems.
However, there may be limited space in the hydraulic system, and/or it may be more costly to employ a larger hydraulic motor and/or pump, making the use of such a motor and/or pump impractical. Also, it may be desirable to retrofit hydraulic systems already in the field with a more robust pump without changing the design of the machine or the hydraulic system significantly.
As can be seen, there currently exists a tradeoff between improved or consistent lifting capacity of such hydraulic systems and their associated lifting cylinders, and the cost and/or size of the hydraulic pump.
A hydraulic pump or motor with a mounting configuration for increased torque according to an embodiment of the present disclosure is provided. The pump or motor may comprise a shaft defining a longitudinal axis, a Y-axis extending upwardly and orthogonally from the longitudinal axis, and an X-axis extending orthogonally to the longitudinal axis, and the Y-axis. A housing may define a first longitudinal end, a second longitudinal end, and a cavity that extends from adjacent the first longitudinal end toward the second longitudinal end. A plurality of mechanical components including one hydraulic interacting component may be disposed in the cavity, and an inlet and an outlet that are in fluid communication with the cavity, the inlet and the outlet being disposed at the second longitudinal end. The shaft may extend from the cavity past the first longitudinal end of the housing, and a mounting flange may be disposed at the first longitudinal end of the housing. The mounting flange may define a pair of fastener receiving apertures that are disposed along the X-axis on either side of the shaft, and the pair of fastener receiving apertures may each define a radius center that are spaced away from each other a X dimension. A pilot projection may extend longitudinally away from the mounting flange, defining a pilot projection diameter, and a ratio of the X dimension to the pilot projection diameter may range from 1.07 to 1.11. Or, a pilot recess may extend longitudinally into the mounting flange, defining a pilot recess diameter, and a ratio of the X dimension to the pilot recess diameter may range from 1.07 to 1.11.
A hydraulic pump or motor with a mounting configuration for increased torque according to another embodiment of the present disclosure is provided. The pump or motor may comprise a shaft defining a longitudinal axis, a Y-axis extending upwardly and orthogonally from the longitudinal axis, and an X-axis extending orthogonally to the longitudinal axis, and the Y-axis. A housing may define a first longitudinal end, a second longitudinal end, and a cavity that extends from adjacent the first longitudinal end to the second longitudinal end. A plurality of mechanical components including one hydraulic interacting components may be disposed in the cavity, and an inlet and an outlet that are disposed near the second longitudinal end and that are in communication with the cavity. The shaft may extend from the cavity past the first longitudinal end of the housing, and a mounting flange may be disposed at the first longitudinal end of the housing. The mounting flange may define a pair of bolt receiving slots that are disposed along the X-axis on either side of the shaft, the pair of bolt receiving slots may each define a radius center that are spaced away from each other a X dimension, and at least one of the bolt receiving slots defines a slot width of the slot. A ratio of the X-dimension to the slot width may range from 7.00 to 10.2.
A hydraulic motor pump assembly according to an embodiment of the present disclosure may comprise a shaft defining a longitudinal axis, a Y-axis extending upwardly and orthogonally from the longitudinal axis, and an X-axis extending orthogonally to the longitudinal axis, and the Y-axis. A housing may define a first longitudinal end, a second longitudinal end, and a cavity that extends from adjacent the first longitudinal end toward the second longitudinal end. A plurality of mechanical components including at least one hydraulic interacting component may be disposed in the cavity. An inlet and an outlet may be disposed near the second longitudinal end, which are in communication with cavity. The shaft may extend from the cavity past the first longitudinal end of the housing, and a mounting flange may be disposed at the first longitudinal end of the housing. The mounting flange may define a pair of fastener receiving apertures that are disposed along the X-axis on either side of the shaft, the pair of fastener receiving apertures may each define a radius center that are spaced away from each other a X dimension. A pilot projection may extend longitudinally away from the mounting flange, defining a pilot projection diameter, and a ratio of the X dimension to the pilot projection diameter may ranges from 1.07 to 1.11. Or, a pilot recess may extend longitudinally into the mounting flange, defining a pilot recess diameter, and a ratio of the X dimension to the pilot recess diameter may range from 1.07 to 1.11.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the disclosure and together with the description, serve to explain the principles of the disclosure. In the drawings:
Reference will now be made in detail to embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. In some cases, a reference number will be indicated in this specification and the drawings will show the reference number followed by a letter for example, 100a, 100b or by a prime for example, 100', 100" etc. It is to be understood that the use of letters or primes immediately after a reference number indicates that these features are similarly shaped and have similar function as is often the case when geometry is mirrored about a plane of symmetry. For ease of explanation in this specification, letters and primes will often not be included herein but may be shown in the drawings to indicate duplications of features, having similar or identical function or geometry, discussed within this written specification.
Various embodiments of hydraulic pump or motor assembly, a mounting flange configuration, and a hydraulic system that are constructed according to various embodiments of the present disclosure will be discussed that may break the aforementioned compromise between the size/cost of a pump or motor and the output/input of the torque to increase the lifting capacity of the lifting cylinders for raising the bed of mining haul truck or the like will be discussed momentarily. Now, an exemplary machine that may employ the embodiments such as a mining haul track will be discussed first with the understanding that any suitable machine including an electromotive diesel engine, a bulldozer, or other heavy equipment used in the marine, earth moving, construction, and mining industries may use these embodiments.
Looking at
In
It is to be understood that other types of machines that use hydraulic systems such as hydraulic lifting systems including articulated trucks, excavators, cars, wheel loaders, etc. may use the embodiments of the present disclosure. Hence, this machine is provided as a non-limiting example.
The engine 22 is configured to supply power to the machine, such as but not limited to, a diesel engine, a gasoline internal combustion engine, a natural gas engine, an electric motor, a battery pack and other known power generating sources or combinations thereof.
With continued reference to
Referring now to
Focusing on
In order to reciprocate the pistons 114 through the cylinders 116, a driven end 118 of each piston is rotatably and slidably engaged with a swashplate 120 by way of a shoe 122. As will be noted, the swashplate 120 can be provided at a transverse angle relative to the cylinder barrel 110 such as that as the barrel 110 and pistons 114 rotate about longitudinal axis 124 under the influence of hydraulic fluid entering and exiting the cylinders 116 or as the drive shaft 104 is driven, the pistons 114 are caused to reciprocate back and forth therein, moving the fluid.
Moreover, the angle at which the swashplate 120 is positioned necessarily dictates the resulting volume of fluid flow from the pump 100. For example, if the swashplate 120 is parallel to the valve plate 112, then there would be no flow of fluid at all. However, with each degree the swashplate 120 is pivoted away from parallel, the resulting flow of the expelled fluid is increased.
Opposite to the driven end 118, each piston 114 includes a working end 126. Also shown in
As one of the ordinary skill in the art will understand, during the filling or intake stroke of each piston 114, the working end 126 moves from the top dead center position 130 to the bottom dead center position 128, and during the exhaust stroke, the working end 126 moves from a bottom dead center position 128 to the top dead center position 130. The hydraulic fluid drawn in during the intake stroke and expelled during the exhaust stroke is navigated through a plurality of fluid flow apertures 131.
With continued reference to
In some embodiments, the first and second output engagement walls 138 and 140, respectively, are not planar in shape, but rather curved in accordance with the overall kidney shape (specifically a compound kidney shape) of the fluid flow apertures 131.
It's to be understood that the inner workings of the pump may vary from this detailed description and includes other embodiments of rotational impeller type pumps, as well as other types of axial displacement pumps, gear pumps, etc.
Referring now to
As shown in
The manifold cap 102a may be attached (e.g., via fasteners) to the second longitudinal end 68, and may define an inlet 106 and an outlet 108 (see
In operation for a motor, the hydraulic fluid/oil enters the inlet and drives the internal components of the motor, and then exits the outlet. The internal components of the motor are mechanically coupled to the shaft, which then rotates. The end of the shaft interfaces with the hub of a device to drive the device. This reverse is true for the operation of a pump. The shaft of the pump may be powered by the engine, which in turn rotates the internal components of the pump creating hydraulic pressure and flow. One example of part of such an interface between the engine, transmission, torque converter, or pump drive and the pump is shown in
Focusing now on
Looking at
Looking at
In such a case as seen in
The hydraulic motor may have a capacity of 50/450 cc/rev, when the X dimension 84 ranges from 148.0 mm to 152.0 mm (e.g., 150.0 mm), the slot width 90 ranges from 15.0 mm to 21.0 mm, and the pilot projection diameter 88 ranges from 138.0 mm to 142.0 mm (e.g., 140.0 mm) when a pilot projection is used. If a pilot recess is employed, its diameter may be slightly larger by up to 1.0 mm . Other capacities and dimensions are possible in other embodiments of the present disclosure. When such dimensions and capacities are present, the shaft 58 may transmit more than 1700 n/m (newton meters) of torque.
As shown in
To help withstand the increased torque, one or more bolts 96 such as a M14, M16, or M20 bolt, (see
The housing, mounting flange and manifold cap may be cast or molded from any suitable material including, but not limited to, steel, aluminum, iron, and thermoplastics.
Any of the dimensions, configurations, materials, etc. discussed herein may be varied as needed or desired to be different than any value or characteristic specifically mentioned herein or shown in the drawings for any of the embodiments.
In practice, an engine assembly, a hydraulic system, a female mounting flange or a male mounting flange, and/or a hydraulic pump assembly constructed according any embodiment disclosed herein may be sold, bought, manufactured or otherwise obtained in an OEM (original equipment manufacturer) or after-market context. In some cases, various components, of the engine assembly, a hydraulic system, and the hydraulic pump assembly, etc. may be provided as a kit to repair or retrofit a machine in the field.
Moreover, embodiments of a hydraulic pump or hydraulic motor that may fit into existing engines and/or machines, unexpectedly breaking the size/cost versus torque compromise discussed earlier herein will now be discussed in detail with reference to
It is to be understood that components of a motor may also be used as a pump by reversing the flow of hydraulic fluid and pressuring the fluid by supplying torque to the shaft, instead of receiving torque from the shaft.
Such a hydraulic pump or hydraulic motor according to an embodiment of the present disclosure (e.g., pump 100) may include a shaft 104, a housing 102, and a manifold cap 102a as previously described herein.
A plurality of mechanical components 71 including one hydraulic interacting component that are disposed in the housing (e.g., a piston 114, a vane, a gear, an impeller, a swashplate 120, a shoe 122, etc.).
The mounting flange 78 may define a pair of bolt receiving slots 80 that are disposed along the X-axis on either side of the shaft, the pair of bolt receiving slots 80 may each define a radius center 82 that are spaced away from each other a X dimension 84. A pilot projection 86 may extend longitudinally away from the mounting flange 78, defining a pilot projection diameter 88, and a ratio of the X dimension 84 to the pilot projection diameter 88 may range from 1.07 to 1.11 in some embodiments of the present disclosure.
Also, a ratio of the X dimension 84 to the slot width 90 may range from 7.00 to 10.2 in some embodiments of the present disclosure. The hydraulic pump or motor has a capacity of 50/450 cc/rev, the X dimension 84 may range from 148.0 mm to 152.0 mm (e.g., 150.0 mm), the slot width 90 may range from 15.0 mm to 21.0 mm, and the pilot projection diameter 88 may range from 138.0 mm to 142.0 mm (e.g., 140.0 mm).
As a result of this configuration, the shaft 104 may be able to receive or deliver more than 1700 n/m of torque.
Such a hydraulic pump or hydraulic motor according to yet another embodiment of the present disclosure may be characterized in that a ratio of the X-dimension 84 to the slot width 90 may range from 7.10 to 10.2, while a ratio of the pilot projection diameter 88 to the slot width 90 may range from 6.50 to 9.50.
In such an embodiment, the hydraulic pump or motor may have a capacity of 50/450 cc/rev, the X dimension may range from 148.0 mm to 152.0 mm, the slot width 90 may range from 15.0 mm to 21.0 mm, and the pilot projection diameter may range from 138.0 mm to 142.0 mm as already described herein.
This embodiment too may have a shaft 104 that is capable of receiving or delivering more than 1700 n/m of torque.
In more general terms, the mounting configuration according to various embodiments of the present disclosure may be described as follows focusing on
A first flange 78 may include either a pilot projection 86 or a pilot recess 86a, and at least two fastener receiving apertures (e.g., bolt receiving slots 80, clearance holes, thru-holes or threaded holes) that each define a radius center 82 that are spaced away from each other a predetermined dimension (e.g., the X dimension 84).
The pilot projection 86 or the pilot recess 86a defines either a pilot projection diameter 88 (see
In some embodiments, the flange 78 includes a pilot projection 86 defining the pilot projection diameter 88, and the at least two fastener receiving apertures are slots 80 that define a slot width 90, and extend through a perimeter 94 of the flange 78 (but not necessarily so). A ratio of the predetermined dimension (e.g., the X dimension 84) to the slot width 90 may range from 7.00 to 10.2, and a ratio of the pilot projection diameter 88 to the slot width 90 may range from 6.50 to 9.50.
In certain embodiments, the flange 78, 78a may include a pilot recess 88a, and the at least two fastener receiving apertures are threaded holes 92. In specific embodiments, the threaded holes 92 are configured to mate with M14, M16, or M20 bolts.
Any of the aforementioned features may be differently configured or have different ranges of ratios and dimensions than what has been described. The female mounting member may be made from any suitable material as previously described herein with respect to the housing, etc.
As used herein, the articles "a" and "an" are intended to include one or more items, and may be used interchangeably with "one or more." Where only one item is intended, the term "one" or similar language is used. Also, as used herein, the terms "has", "have", "having", "with" or the like are intended to be open-ended terms. Further, the phrase "based on" is intended to mean "based, at least in part, on" unless explicitly stated otherwise.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments of the apparatus and methods of assembly as discussed herein without departing from the scope or spirit of the invention(s). Other embodiments of this disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the various embodiments disclosed herein. For example, some of the equipment may be constructed and function differently than what has been described herein and certain steps of any method may be omitted, performed in an order that is different than what has been specifically mentioned or in some cases performed simultaneously or in sub-steps. Furthermore, variations or modifications to certain aspects or features of various embodiments may be made to create further embodiments and features and aspects of various embodiments may be added to or substituted for other features or aspects of other embodiments in order to provide still further embodiments.
Accordingly, it is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention(s) being indicated by the following claims and their equivalents.