The present invention relates generally to tools, such as pliers. More particularly, the present invention relates to a tool with jaw teeth geometry adapted to grip a work piece, such as a fastener head.
A typical problem encountered in the auto repair or carpentry trades is fasteners, such as, for example, pan head screws, socket head cap screws, and hex head bolts and nuts, that have been stripped out or rounded off, which thus make application of torque to such fasteners difficult. In such a case, pliers can be used to remove the stripped fastener by apply a large amount of clamping force, wherein the jaw teeth dig into the fastener. However, this typically causes additional stripping of the fastener, or if the fastener is too stripped or rounder, this does not work. Another option is to use a bolt extractor tool, if available and present. However, bolt extractor tools are typically size dependent, and thus require a plurality of different sizes. Also, use of bolt extractor tools are limited to specific types of fasteners as well.
For fasteners that are offset from the surface, such as hex head bolts or socket head cap screws, a socket-type tool with an interior diameter of spiraled teeth has been used. However, the effectiveness of this tool is determined by the available engagement area on the fastener. Likewise, these tools are fastener size dependent as well, thus a plurality of differently sized removal tools are required. For other types of low-profile fasteners, such as pan head screws, a bolt extractor with spiraled teeth on the outside of the diameter has been used. However, this tool requires that a hole is drilled into the fastener and many sizes of extractors must be kept on hand for various sized fasteners.
Another example of a tool used to remove stripped screws and bolts is locking pliers with a four-bar linkage is able to generate a large amount of clamping force on the fastener head. Locking pliers are best engaged to the fastener by being aligned orthogonal to the fastener axis but may be also used by engaging the tool axially with the fastener. However, locking pliers are best suited for larger diameter screws and bolts and may not work for pan head screws or fasteners with a sloped head.
Another example of pliers adapted to remove stripped screws and bolts is embodied in the 612AEP pliers, manufactured by Snap-on Incorporated of Kenosha, Wisconsin, where a set of teeth are oriented along the pliers axis and which start at the front face. These teeth are set on an arc such that when the pliers' jaws are closed, the teeth form a round hole, as shown.
Another example of pliers adapted to remove stripped-out screws and bolts is disclosed in U.S. Pat. Nos. 6,923,097 and 8,656,812. These patents disclose pliers having a “vamplier” design that includes a set of teeth oriented along the pliers' axis, in a manner similar to the 612AEP design, and are formed at an angle away from the neutral plane of the closed jaws. Accordingly, a sloped tunnel is formed or the teeth lie on a radius such that a concave shape is formed in the jaw surface.
The present invention broadly comprises a tool, such as pliers, having a jaw tooth geometry adapted to enhance gripping of fasteners, such as screws, pins, bolts, and nuts, when the axis of rotation of the fastener is substantially parallel with a major axis of the tool. In other words, the tooth geometry improves the grip on a fastener when the engagement is such that the axis of rotation of the fastener is orthogonal to the plane that defines the front of the jaws of the pliers. The tooth geometry can include a gripping pattern that enhances gripping with a fastener, where the normal force is oriented close to, or past orthogonal to, the axis of rotation of the fastener, so that the fastener can be engaged with the tool end-on and turned and/or pulled by the tool.
In an embodiment, the gripping pattern can be cut on a radius into a front of the jaws of the pliers. From the front, the gripping pattern may extend towards a back of the gripping area and veer off an axis at an angle. In an embodiment, the gripping pattern can follow a curve from the front of the jaws to the back of the gripping pattern, such that the teeth are on a radius where the center of the radius is set a distance from the front of the jaws. The teeth may be disposed on a depression, which is dished in two orthogonal directions where neither axis aligns with any major feature of the pliers, that starts at the front face of the jaw and terminates at a distance defined by a front to back dish radius starting point. Where the dished area meets the front edge/plane of the jaws, the center point of the depression may be equidistant from both sides of the jaws.
For example, the present invention broadly includes a tool. The tool includes first and second halves pivotally coupled together and a grip portion including a surface with a depression. The surface has a first set of teeth disposed on the depression. The first set of teeth abut a front face of the grip portion and extend away from the front face at an angle that is offset from a major axis of the tool.
The present invention can further broadly comprise a tool that includes a handle portion having a first axis that is substantially perpendicular to a front face of the tool, and a grip portion adapted to engage a fastener and having a first set of teeth disposed on a surface with a depression that follows a first curve that is in a first plane and a second curve that is in a second plane. The first set of teeth abut the front face and extend away from the front face at an angle that is offset from the first axis.
The present invention can further broadly comprise a pliers-type tool. The pliers-type tool including a first half that includes a first handle portion, a first joint portion having an aperture adapted to receive a fastener, and a first grip portion including a first surface with a first depression, the first surface having a first set of teeth disposed on the first depression, wherein the first set of teeth abut a front face of the pliers-type tool and extend away from the front face at a first angle that is offset from a major axis of the pliers-type tool. The pliers-type tool further including a second half that includes a second handle portion, a second joint portion having a slot adapted to receive the fastener to couple the first and second halves, and a second grip portion including a second surface with a second depression, the second surface having a second set of teeth disposed on the second depression, wherein the second set of teeth abut the front face and extend away from the front face at a second angle that is offset from the major axis.
For the purpose of facilitating an understanding of the subject matter sought to be protected, there are illustrated in the accompanying drawings embodiments thereof, from an inspection of which, when considered in connection with the following description, the subject matter sought to be protected, its construction and operation, and many of its advantages should be readily understood and appreciated.
While the present invention is susceptible of embodiments in many different forms, there is shown in the drawings, and will herein be described in detail, embodiments of the invention, including a preferred embodiment, with the understanding that the present disclosure is to be considered as an exemplification of the principles of the present invention and is not intended to limit the broad aspect of the invention to any one or more embodiments illustrated herein. As used herein, the term “present invention” is not intended to limit the scope of the claimed invention, but is instead used to discuss exemplary embodiments of the invention for explanatory purposes only.
The present invention broadly comprises a tool, such as pliers, having gripping jaw teeth that provide an enhanced contact pattern over the prior art for engaging fasteners, such as screws, pins, bolts, stripped fasteners, and other round or near round fasteners when engaging the fastener on-axis. The gripping teeth may be formed in a dished area disposed at a distal end of a jaw of the pliers and are oriented at an angle that turns away from a major axis of the pliers and/or an axis that is orthogonal to a plane formed by a front face of the jaws. The angle and greater contact area enhances the amount of torque that can be applied to the fastener before the tool disengages or “slips against” the fastener, compared to the prior art tools.
Referring to
The gripping portions 108, 118 may include respective first tooth regions 122, 124 and second tooth regions 126, 128, with differing tooth patterns. In an embodiment, an axis system [x1, y1, z1] can be aligned with the respective handle portions 104, 114. However, the axis system is not limited to being aligned with the handle portions 104, 114 and can be aligned in any desired alignment relative to the handle portions 104, 114. Teeth in the second tooth regions 126, 128 can be cut along the major ‘y1’ axis and formed in the [x1 y1] plane as a grid pattern. In another embodiment, the teeth in the second tooth regions 126, 128 may not be aligned with the axis system.
Referring to
The surface of the second tooth regions 126, 128 can have respective depressions 130, 132 (also referred to as a concave bowl). The teeth disposed on the depressions 130, 132 can abut respective front faces 134, 136 of the grip portions 108, 118 and extend towards the joint portions 106, 116 at an angle offset from the major ‘x1’ and/or ‘x2’ axes of the pliers at an angle α. The teeth disposed on the depressions 130, 132 may be cut in a continuous pattern, as illustrated, or cross-hatched such that an array of teeth are formed in a grid pattern.
In an embodiment, angle α may range from about 1° to about 15° off of the x1 and/or the x2 axes. For example, the angle α may range from about 1° to 10°, 2° to 7°, 3° to 8°, etc. off of the x1 and/or x2 axes. Preferably, angle α is 5° off of the x1 and/or the x2 axes. Referring to FIG. 7, the teeth disposed in the respective depressions 130, 132 of the respective first and second portions 102, 112 may have substantially same angle α, such that when the tool 100 is in a closed state, the teeth disposed in the depressions 130, 132 of the respective first and second portions 102, 112, form a substantial spiral or helical pattern. The spiral or helical pattern of the teeth has been found to cause the tool 100 to be further pulled onto a fastener when the tool 100 is rotated about an axis of rotation of the fastener. In an embodiment, angle α may be positive or negative, depending on the direction of rotation (e.g., clockwise or counter-clockwise) required to rotate the tool 100 to engage the fastener. Alternately, as illustrated in
The inventors of the present invention conducted extensive testing of tools according to embodiments of the present invention and compared it to results of the same testing conducted on a typical pliers tool having a “vamplier” design (indicated as “prior art” in the tables below). A first tool according to an embodiment of the present invention had an angle α of 0° was tested (“Tool 1, α=0°”), a second tool according to an embodiment of the present invention had an angle α of 2° (“Tool 2, α=2°”), and a third tool according to an embodiment of the present invention had an angle α of 5° (“Tool 3, α=5°”). As shown by the following testing, the embodiments of the present invention are able to apply more rotational force (torque) to an indicated fastener before slipping off, compared to typical pliers having a “vamplier” design.
The above tables show the normalized average, represented as a percentage, of the maximum amounts of torque applied to the indicated fasteners during testing of the tools according to embodiments of the present invention having various angles α compared to a typical pliers design. As compared to the typical pliers design, the present invention tool 100 can apply more rotational force before slipping off the fastener, thereby enhancing the ability to remove damaged fasteners, such as, for example, stripped out fasteners.
Referring to
Referring to
In an embodiment, the tooth angle β and tooth depth 156 are dependent on the radius 148 and the type and dimensions of fasteners to be coupled. Likewise, the radius 140 and the origin location of the first curve 138, as defined by distances 142 and 144, can be defined such that an optimal normal force is achieved for a range of fastener types and sizes. The tooth angle β may range from about 20° to about 120° and is preferably 40°-70°. The teeth disposed in the depressions 130, 132 may be separated by a radius trench varying in radius from about 0.002 to about 0.01 inches, or a flat trench varying in length from about 0.002 to about 0.01 inches. The tooth depth 156 may range from about 0.005 inches to about 0.1 inches, preferably about 0.01 to about 0.07 inches. The radius 148 may range from about 0.04 inches to about 2 inches. In addition, the second curve 146 may be a complex curve, such as a parabolic or a spline, and may extend across the entire front faces 134, 136 of the respective grip portions 108, 118. In an embodiment, the second curve 146 may follow a straight line path. The distance 150 defining the depth of the cut for the second curve 146 may range from about 0.02 inches to about 2.1 inches. The difference of the distance 150 subtracted from the radius 148 can be between about 0.01 and about 0.2, but not so great that the thickness of the grip portions 108, 118 at its thinnest point is less than about 0.07 inches. The distance 154 may be about half of the grip portions 108, 118 width plus or minus about 0.2 inches to cause the depressions 130, 132 to be placed on or about the center of the grip portions 108, 118.
The radius 140 defining the first curve 138 may range from about 0.04 inches to about 2 inches. And the distance 144 defining the depth of the cut along the first curve 138 may range from about 0.02 inches to about 2.1 inches. The difference of the distance 144 subtracted from the radius 140 may be between about 0.01 and about 0.2, but not so great that the thickness of the grip portions 108, 118 at its thinnest point is less than about 0.07 inches. The distance 144 may range between about 0.002 inches and about seven-eighths of the radius 140. In an embodiment where the first curve 138 is a hyperbola, the distance 144 may range from about 0.002 inches to about 0.5 inches.
While aspects of the disclosure describe a tool having a grip portion delineated into three teeth sections, other configurations are possible. For example, a configuration can include the first tooth regions 122, 124 as a cutting section, or can exclude the first tooth regions 122, 124 such that the second tooth sections 126, 128 extends all the way the joint portions 106, 116. Further yet, the grip portions 108, 118 may be formed entirely of the depressions 130, 132, in other words a dish-shaped, single section jaw.
The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. While particular embodiments have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made without departing from the broader aspects of the inventors' contribution. The actual scope of the protection sought is intended to be defined in the following claims when viewed in their proper perspective based on the prior art.
This application claims priority to, and the benefit of, U.S. Provisional Patent Application Ser. No. 62/754,772, filed Nov. 2, 2018, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
272573 | Mihan | Feb 1883 | A |
273382 | Packham | Mar 1883 | A |
636587 | Sylvester | Nov 1899 | A |
1116093 | McKaig, Sr. | Nov 1914 | A |
1300495 | Shank | Apr 1919 | A |
1517162 | King | Nov 1924 | A |
1874944 | Fabian | Aug 1932 | A |
1902913 | Sievern | Mar 1933 | A |
2098369 | Baash | Nov 1937 | A |
2493941 | Belden | Jan 1950 | A |
2618994 | Frazee | Nov 1952 | A |
2760395 | St. Pierre | Aug 1956 | A |
2847889 | Cain | Aug 1958 | A |
2873636 | Sherman | Feb 1959 | A |
2962919 | Grundmann et al. | Dec 1960 | A |
3107424 | Stacawicz | Oct 1963 | A |
4318316 | Guilliams | Mar 1982 | A |
5572914 | Coleman | Nov 1996 | A |
5833697 | Ludwick | Nov 1998 | A |
5865072 | Jerdee | Feb 1999 | A |
6923097 | Takasaki | Aug 2005 | B2 |
7124786 | Gowhari | Oct 2006 | B1 |
7234377 | Wolfson | Jun 2007 | B2 |
8607670 | Stawarski | Dec 2013 | B2 |
8622096 | Yang | Jan 2014 | B2 |
8656812 | Kawai et al. | Feb 2014 | B2 |
8677865 | Buchanan | Mar 2014 | B2 |
10960519 | Wu | Mar 2021 | B2 |
20030233915 | Takasaki | Dec 2003 | A1 |
20050235786 | Yueh-Chiang | Oct 2005 | A1 |
20080229651 | Broadnax | Sep 2008 | A1 |
20120000019 | Steele | Jan 2012 | A1 |
20160184980 | Takasaki et al. | Jun 2016 | A1 |
20200223033 | Blumenthal | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
101432101 | May 2009 | CN |
101804605 | Aug 2010 | CN |
201544178 | Aug 2010 | CN |
202123444 | Jan 2012 | CN |
102365152 | Feb 2012 | CN |
202446247 | Sep 2012 | CN |
204772158 | Nov 2015 | CN |
207155603 | Mar 2018 | CN |
207155714 | Mar 2018 | CN |
207824726 | Sep 2018 | CN |
207953622 | Oct 2018 | CN |
207971853 | Oct 2018 | CN |
2436488 | Apr 2012 | EP |
149396 | Aug 1920 | GB |
2004330348 | Nov 2004 | JP |
2005279801 | Oct 2005 | JP |
6254322 | Dec 2017 | JP |
2018144189 | Sep 2018 | JP |
2019003591 | Apr 2018 | WO |
2018163849 | Sep 2018 | WO |
Entry |
---|
Examination Report for Application No. 2019257518 dated Oct. 16, 2020, 5 pages. |
Chinese Office Action for corresponding Chinese Application No. 11020480980 dated May 25, 2021, 14 pages. |
Canadian Office Action for Application No. 3,059,697 dated Feb. 1, 2021, 5 pages. |
Chinese Office Action for Application No. 201911060905.7 dated Feb. 22, 2021, 11 pages. |
Examination Report for Application No. 2019257518 dated Apr. 12, 2021, 4 pages. |
Combined Search and Examinatin Report for Application No. GB1915445.9 dated Apr. 1, 2020, 8 pages. |
Australian Examination Report No. 3 for corresponding AU Application No. 2019257518, dated Oct. 1, 2021, 3 pages. |
Canadian Office Action for corresponding Application No. 3059697 dated Sep. 28, 2021, 6 pages. |
Chinese Office Action for corresponding Application No. 11020998080 dated Oct. 15, 2021, 5 pages. |
United Kingdom Examination Report for corresponding Application No. GB1915445.9, dated Dec. 1, 2021, 6 pages. |
Chinese Office Action for corresponding Application No. 201911060905.7, dated Nov. 2, 2021, 10 pages. |
United Kingdom Combined Search and Examination Report for corresponding Application No. GB2203878.0, dated Aug. 19, 2022, 7 pages. |
Examination Report No. 1 for corresponding Australian Application No. 2022200768 dated Mar. 8, 2023, 3 pages. |
Chinese Office Action for corresponding CN Application No. 2022109304204, dated Apr. 13, 2023, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20200139515 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
62754772 | Nov 2018 | US |