Axial roller bearing cages, including “sigma style” axial bearing cages, are typically used in axial roller bearings in industrial equipment and automobile transmissions. “Sigma style” axial bearing cages are referred to as such because the cage profile resembles the capital Greek letter sigma. Currently, a design guide is used to calculate the maximum pierced roller pocket length and the longest corresponding roller for axial roller bearings. The roller pocket is pierced in the cage by a punch after forming, which limits the pocket length to the length of the punch. Additionally, the ends of the rollers are currently supported in the cage by a sheared edge support surface, which is equivalent to the thickness of the cage stock. The sheared edge supports only a fraction of the roller end surface and the support surface is offset from the roller axis, imparting asymmetric loading on the roller during operation. Moreover, the current sheared edge accommodates only a small oil film area on the end of the roller, which is a factor in limiting the bearing's maximum operating speed.
The present invention is directed to an axial roller bearing cage with an increased roller pocket length which allows longer rollers to fit in an existing cage envelope. Lengthening the roller pocket also converts the roller end support surface from a sheared edge to a smooth surface, The larger, smoother surface improves lubrication conditions at the ends of the rollers and also aids in reducing friction, which can increase the bearing's high speed capacity.
As a result of the present invention, the ends of the rollers are supported on a centerline of the roller, which reduces frictional torque by reducing the length of the frictional moment arm on each roller and the loads on the rollers are thus symmetric. Additionally, the ends of the rollers of the improved axial roller bearing cage are supported by the smooth surface of the formed flange. The larger support surface improves oil film development and could enable higher operating speeds. Finally, the roller pockets of the cage extend to the flanges, accommodating longer rollers. For a given envelope, the bearing static and dynamic capacities consequently increase. The longer pocket conversely enables a more compact cage design for a given roller length.
Broadly, the present invention can be defined as an axial roller bearing cage, which includes an inner ring that has only a single inboard directed surface, an outer ring that has only a single inboard directed surface, and a plurality of cage bars and roller pockets formed between the inner ring and the outer ring. The roller pockets are defined by four sides. The single inboard directed surface of the outer ring forms a first side of the roller pocket. The single inboard directed surface of the inner ring forms a second side of the roller pocket, opposite the first side. Two opposing cage bars form a third side and a fourth side of the roller pocket.
In an additional embodiment, rollers sit in the roller pockets. In another embodiment, the rollers have ends and the ends are each supported on a centerline of each of the rollers.
In a further embodiment, the inner ring and the outer ring are respectively formed by a first flange and a second flange, the first flange and the second flange each having an outboard portion and an inboard portion forming a doubling.
In yet a further embodiment, the first flange, the second flange and the cage bars, in combination, for a sigma shape.
In a further embodiment, between the first flange and the second flange, each cage bar has a first segment, a second segment, a third segment, a fourth segment and a fifth segment forming the sigma shape in conjunction with the first flange and the second flange.
In an even further embodiment, the first segment is fixed perpendicular to the inboard portion of the first flange, the second segment is fixed between the first segment and the third segment in an angular manner, the third segment is fixed between the second segment and the fourth segment which is angular in an opposite direction from the second segment, the fourth segment is fixed to the third segment and the fifth segment, the fifth segment is fixed to the fourth segment and perpendicular to the inboard portion of the second flange.
In another embodiment, the roller pockets extend an entire length of the connecting elements, to the inboard portion of the first flange and the inboard portion of the second flange.
In yet another embodiment, the ends are supported by a smooth surface provided by the inboard portion of the first flange and the inboard portion of the second flange.
In a further embodiment, the inboard portion of the first flange and the inboard portion of the second flange have an end surface that extends from an edge of the roller pocket parallel to a centerline of the roller and perpendicular to the ends of the rollers.
In yet further embodiment, loading on the rollers is substantially symmetrical.
In an alternative embodiment, the inner ring and the outer ring are respectively formed by a single layer first flange and a single layer second flange.
In another embodiment, the inner ring is formed from a first flange which has an outboard portion and an inboard portion and the outer ring is formed from a second flange which has a single layer portion.
In yet another embodiment, the inner ring is formed from a first flange which has a single layer portion and the outer ring is formed from a second flange which has an outboard portion and an inboard portion.
The present invention will be further understood and appreciated by reading the following description in conjunction with the accompanying drawings, in which:
Referring now to the drawings, in which like reference numerals refer to like reference parts throughout,
The present invention has been described with reference to a preferred embodiment. It should be understood that the scope of the present invention is defined by the claims and is not intended to be limited to the specific embodiment disclosed herein.
This application claims the priority of U.S. 61/331,595 filed May 5, 2010, which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61331595 | May 2010 | US |