1. Field of the Invention
The present invention relates to an axial turbine, such as a steam turbine or a gas turbine.
2. Description of the Related Art
In the axial turbine, the stationary blades increase the velocity of a working fluid and deflect the working fluid in the rotational direction of turbine rotor. The working fluid with the rotational velocity components provides kinetic energy to moving blades and rotates the turbine. In order to induce such a flow of the working fluid for driving the turbine rotor, the height of the outlet flow path of a turbine stage measured in the radial direction of the turbine rotor is made higher than the height of the inlet flow path of the turbine stage, in conformance to the fact that the inlet of the turbine stage is higher in pressure than the outlet thereof. As a result, generally, on a stationary blade annular plane outer periphery in each stage, the flow path height monotonically increases from the inlet toward the outlet of the stage (refer to JP, A 2003-27901 for example).
In a typical turbine, since the flow path height of the stationary blade annular plane outer periphery monotonically increases from the inlet toward the outlet of the stage as described above, a flow having past the stationary blade has a velocity component in a radially outward direction. Usually, the flow having a velocity component in the radially outward direction increases in the relative velocity with respect to the moving blade, correspondingly. In the future, it is expected that elongation of turbine blades is performed for further improvement in performance, and hence the peripheral velocity in the moving blade outer periphery would be increasingly higher. However, if the elongation of turbine blades is performed without changing the current design, that is, without elongating the axial length, then, the inclination angle of the stationary blade annual plane outer periphery becomes steeper, so that a velocity component in the radially outward direction of a flow that has exited from the stationary blade increases. As a consequence, there occurs a possibility that the relative velocity of a flow entering the moving blade with respect to the moving blade may exceed the sound velocity, and turbine stage efficiency might disadvantageously decrease because of the moving blade becoming more susceptible to shock wave detriment.
The present invention is directed to an axial turbine capable of suppressing the relative velocity of a flow entering the moving blade with respect to the moving blade, and thereby improving turbine stage efficiency.
Accordingly, the present invention provides an axial turbine includes a plurality of stages, each of the plurality of stages including stationary blades adjacent to each other along the turbine circumferential direction and corresponding moving blades adjacent to each other along the circumferential direction, each of the moving blade being located downstream of a corresponding one of the stationary blades along a flow direction of a working fluid, so as to be opposed to the corresponding stationary blade, wherein each of the stationary blades is formed so that the intersection line between the outer periphery of the stationary blade constituting a stage having moving blades longer than moving blades in a preceding stage and a plane containing the central axis of the turbine, has a flow path constant diameter portion that includes at least an outlet portion of the stationary blade and that is parallel to the central axis of the turbine.
According to the present invention, it is possible to suppress the relative velocity of a flow entering the moving blade with respect to the moving blade, and thereby improve turbine stage efficiency.
With these features, a flow 20 of the working fluid is induced by a pressure difference (P0−p1), and the flow 20 is increased in speed when passing through the stationary blade 41 and deflected in the turbine circumferential direction. The flow having been supplied with a circumferential velocity component by passing through the stationary blade 41 provides energy to the moving blade 42 and rotates the turbine rotor 15.
The stage inlet is higher in pressure and smaller in the specific volume of the working fluid than the stage outlet, so that the flow path height H1 at the stage inlet is lower than the flow path height H2 at the stage outlet. Therefore, the stationary blades 41 (exactly speaking, the inner peripheral surface of the outer peripheral side diaphragm 6 thereof) is formed so that, regarding an outer diameter line 4, that is, the intersection line between the outer periphery of the stationary blade 41 and a plane (meridian plane) containing the central axis 21 of the turbine, the stage flow path height becomes linearly (or monotonically) higher from the moving blade outlet in a preceding stage to the moving blade inlet of the pertinent stage. Hence, in a stage having particularly longer blades of a typical axial turbine, the radius R1 of a stationary blade outlet outer periphery 3 (the point at the stationary blade trailing edge on the outer diameter line 4, or the stationary blade outer peripheral end trailing-edge) of the stationary blade 41 is smaller compared as the radius R2 of a moving blade inlet outer periphery (moving blade outer peripheral end leading-edge) 11 of the moving blade 42. In general, if the moving blade outer peripheral end peripheral velocity Mach number, obtained by dividing a rotational peripheral velocity of the inlet outer periphery 11 of the moving blade 42 by the sound velocity in a fluid flowing into the outer peripheral end (outer periphery within a flow path effective range) of the moving blade 42 exceeds 1.0, then, there occurs a possibility that the relative velocity of the working fluid entering the moving blade 42 with respect to the moving blade 42 may becomes supersonic. If the moving blade outer peripheral end peripheral velocity Mach number exceeds 1.7, the relative velocity of the working fluid with respect to the moving blade 42 perfectly becomes supersonic.
The relative inflow velocity with respect to the moving blade in a stage in which the blade length is large and the moving blade outer peripheral end peripheral velocity Mach number exceeds 1.0, is prone to exceed 1.0 around the root and around the tip of the moving blade, as indicated by a broken line in
As shown in
Here, based on the law of conservation of angular momentum between the stationary blade and moving blade, the relationship between the swirl velocity component ct1 and ct2 can be represented by the following equation, using the stationary blade outer peripheral trailing-edge radius R1 and the moving blade outer peripheral leading-edge radius R2.
R1×ct1=R2×ct2 (Equation 1)
In the axial turbine shown in
R1<R2 (Equation 2)
Therefore, from Equations (1) and (2),
ct1>ct2 (Equation 3)
In this manner, the swirl velocity ct2 at the inlet of each of the moving blades 42a and 42b is smaller than the swirl velocity ct1 at the outlet of each of the stationary blades 41a and 41b.
On the other hand, on the moving blade tip side, a peripheral velocity U of the moving blades 42a and 42b is high, and hence, as shown in
Considering the above-described relationship, when a flow with the swirl velocity ct1 given by the stationary blades 41a and 41b flows into the moving blades 42a and 42b, with its flow path enlarged in diameter, while having an outward velocity component in the turbine radial direction, then, as described in Equation (3), the swirl velocity ct1 reduces to ct2 (<ct1) according to the law of conservation of angular momentum by that time, so that the relative inflow velocity w2 with respect to the moving blade increases to thereby become supersonic. That is, when attempting blade elongation, if the working fluid having passed the outer periphery of the stationary blade 41 has an outward velocity component in the turbine radial direction, this would cause the relative inflow velocity w2 with respect to the moving blade to become supersonic, resulting in severely reduced turbine stage efficiency.
As mentioned in the foregoing paragraph, an axial turbine according to an embodiment of the present invention will be described below.
As shown in
Specifically, when the point located at a position at an arbitrary distance d from the stationary blade outlet outer periphery 3 toward the upstream side along the stationary blade outer diameter line 4 is defined as an intermediate portion in the axial direction 5, a cylindrical annular flow path with a constant radius R3 is constructed in a section from the intermediate portion 5 in the axial direction to the stationary blade outlet outer periphery 3. That is, in this embodiment, in the identical turbine stage, the following relationship holds.
R1=R3 (Equation 4)
Furthermore, the stationary blade 41 and the diaphragm 6 thereof are formed so that the stationary blade outer diameter line 4 has a flow path enlarged diameter portion 61 that inclines to the outer peripheral side in the turbine radial direction, toward the downstream side along the flow of the working fluid, and that is located on the upstream side further than the flow path constant diameter portion 60. In this embodiment, the flow path enlarged diameter portion 61 smoothly connects with the flow path constant diameter portion 60.
In addition, the height in the turbine radial direction, of the flow path equals to diameter portion 60, i.e., stationary blade outer peripheral trailing-edge radius R1, is substantially equals the height in the turbine radial direction, of the flow path effective range outer peripheral portion of the moving blade 42 in the same stage. In this embodiment, since the moving blade 42 has a connection cover 12 for connecting it with another moving blade circumferentially adjacent thereto, the flow path effective range outer peripheral portion of the moving blade 42 is positioned at the height of the inner peripheral surface of the connection cover 12. In this case, the height in the turbine radial direction, of the flow path effective range outer peripheral portion of the moving blade 42 is the moving blade outer periphery leading-edge radius R2. Therefore, in this embodiment, the following relationship is obtained.
R1=R2 (Equation 5)
Here, the turbine stage shown in
According to this embodiment, in such a turbine stage, the annular flow path of the working fluid in the vicinity of the stationary blade outlet is a cylindrical flow path that meets the condition: R3=R1. As a result, the working fluid having passed through the stationary blade 41 becomes a flow substantially parallel to the central axis of the turbine, the flow having no outward velocity component in the turbine radial direction. As shown in
Also, in this embodiment, since stationary blade outer peripheral trailing-edge radius R1 is approximately equals to the moving blade outer peripheral leading-edge radius R2, the working fluid having passed through the stationary blade outer periphery and flowing substantially parallel to the central axis 21 of the turbine, flows into the moving blade outer periphery. Hence, it is possible to allow the working fluid to flow into the flow path effective range in a balanced manner, and make full use of the performance of an elongated moving blade 42 to the greatest extent possible.
As described above, at the tip of the moving blade 42, there is provided the connect cover 12 for connecting moving blades adjacent to each other along the circumferential direction. At the joint between the connection cover 12 and the moving blade 42, there is provided a rounded portion (buildup portion) 14 in order to avoid excessive stress concentration. In this case, the region from the tip of the moving blade 42 to a rounded portion 14 with a height h, on the inner peripheral side in the turbine radial direction, is different in blade shape from one that has been hydrodynamically designed, and hence it is not necessarily effective as a substantial flow path. Therefore, the flow path effective range outer peripheral portion of the moving blade 42 is assumed to be located between a height position of the inner peripheral surface in the turbine redial direction, of the connection cover 12, and a position located further toward the inner peripheral side in the turbine radial direction than the above-described position by the height h of the rounded portion 14.
Therefore, taking even the rounded portion 14 in the joint between the moving blade 42 and the connection cover 12 into consideration from an aerodynamic viewpoint, the stationary blade outer peripheral trailing-edge radius R1, for which an effective length of the moving blade 42 is used to the greatest extent possible, is not required to be precisely equalized with the moving blade outer peripheral leading-edge radius R2, but it suffices only to satisfy the following relationships:
R2=R3 (Equation 6)
0≦(R2−R1)<h (Equation 7)
If the moving blade 42 has no connection cover 12, that is, the tip of the moving blade 42 is a free end, the flow path effective range outer peripheral portion of the moving blade 42 is the tip (outer periphery) of the moving blade 42. Therefore, the stationary blade outer peripheral trailing-edge radius R1, for which the moving blade effective length is used to the greatest extent possible, becomes equal to the moving blade outer peripheral leading-edge radius R2, so that, by satisfying the Equations (4) and (5), it is possible to reduce the relative inflow velocity with respect to the moving blade to a lower value than the sound velocity, and use the effective length of the moving blade 42 to the greatest extent possible.
As shown in
The above-described axial turbine according to this embodiment can suppress more effectively the relative inflow velocity with respect to the moving blade by variously changing design. Hereinafter, modifications in which such effective arrangements are combined will be successively described.
With respect to the axial turbine according to the embodiment shown in
Here, the stationary blade throat “s” refers to a flow path portion that has the smallest area in a flow path formed between the stationary blades 41a and 41b adjacent to each other along the circumferential direction as shown in
In general, the throat-pitch ratio s/t is designed so as to be small on the blade inner peripheral side and large on the blade outer peripheral side, as indicated by a broken line in
As shown in
As shown in
By bowing (or bending) the stationary blade 41 as shown in
As shown in
Specifically, the flow path reduced diameter portion 62 is located between the flow path enlarged diameter portion 61 and the flow path constant diameter portion 60, and is supplied with a curvature that is convex upwardly in the turbine radial direction. The flow path reduced diameter portion 62 is inflected in the vicinity of a boundary with the flow path constant diameter portion 60, and smoothly connects with the flow path constant diameter portion 60. With respect to the flow path enlarged diameter portion 61, the flow path reduced diameter portion 62 is directly contiguous. The radius R4 of the outermost periphery of the flow path reduced diameter portion 62 satisfies the following relationship.
R4>R3 (Equation 8)
Other constructions are the same as those in
Because the flow passing through the stationary blade outer peripheral side flows along the stationary blade outer diameter line 4, it is once supplied with a curvature that is convex toward the inner peripheral side in the turbine radial direction when passing through the flow path reduced diameter portion 62. By giving to the flow such a curvature that is convex toward the inner peripheral side, it is possible to release the effect of the flow attempting to expand toward the outer peripheral side in the turbine radial direction under a centrifugal force, between the stationary blade 41 and the moving blade 42 in the turbine stage. As can be seen from
In the foregoing descriptions, while the case where the flow path enlarged diameter portion 61 is provided on the stationary blade outer diameter line 4 has been exemplified with reference to the several figures, it suffices only that there is provided the flow path constant diameter portion 60 including at least the stationary blade outlet outer periphery 3, as long as the outward velocity component in the turbine radial direction of a flow having passed through the stationary blade is suppressed. Hence, the flow path enlarged diameter portion 61 is not necessarily required to be provided on the stationary blade outer diameter line 4, but it may be provided between the stationary blade inlet and the moving blade outlet in a preceding stage depending on the circumstances. In this case, a similar effect is produced, as well.
Furthermore, while the case where the stationary blade outer peripheral trailing-edge radius R1 is substantially equalized with the moving blade outer peripheral leading-edge radius R2 (or moving blade effective length outer peripheral radius) has been exemplified with reference to the several figures, this condition is not necessarily required to be satisfied in design, as long as the outward velocity component in the turbine radial direction of a flow having passed through the stationary blade is suppressed. Hence, as long as the relative inflow velocity with respect to the moving blade is reduced lower than the sound velocity without giving to the flow any outward velocity component in the radial direction, it suffices only that the flow path constant diameter portion 60 is provided at least on the downstream side of the stationary blade outer diameter line 4. Also, the relationship between the stationary blade outer peripheral trailing-edge radius R1 and the moving blade outer peripheral leading-edge radius R2 (or moving blade effective length outer peripheral radius) is not necessarily required to be within the range of Equations (5) or (6).
Number | Date | Country | Kind |
---|---|---|---|
2005-101371 | Mar 2005 | JP | national |