The present invention relates to an axial ventilation device and to the applications thereof. In the context of the present invention, an “axial ventilation device” means a device comprising a plurality of axial fans.
A fan is a turbomachine which transfers energy to a gas passing through it so that this gas can be conveyed, for example through a wall, into one or more pipes, or alternatively so as to sweep a space, notably to ensure the uniformity thereof a fan is made up of blades fixed to a hub, the assembly forming an impeller, in which said hub is driven by a motor; fan classes are usually defined according to the type of impeller, these differing from one another in terms of the shape of the blades.
What is meant by an “axial fan” is a fan in which the vanes are of helicoid shape and in which the direction in which the gas flows is essentially axial; these fans are also known as “axial-flow fans”.
Axial fans are notably suited to stirring a gas in high-volume premises or to extracting gases through walls; they may also be mounted inside a duct. An axial fan comprises a case ring which is a static part, fixed directly or by means of intermediate components to a building or to some equipment; the case ring exhibits symmetry of revolution extending along a longitudinal axis. This axis will be referred to hereinafter as the “axis of the fan”. The case ring may be of substantially cylindrical or substantially frustoconical shape; part of the duct may constitute the case ring of an axial fan; the two ends of the case ring, which are substantially perpendicular to the axis of the fan, comprise an opening to allow the passage of the gas. An axial fan also comprises blades, also referred to as vanes, fixed to a hub extending along the axis of the fan. Said hub is driven by a motor. The gas is thus driven essentially along the axis of the fan, inside the case ring.
Usually, the motor of an axial fan is positioned inside the case ring, along the axis of the fan. The gas thus moves in the space lying between the internal wall of the case ring and the external wall of the motor.
This results in a loss of pressure head caused by the motor taking up space inside the case ring.
Moreover, the requirements for securing (making safe) industrial equipment are ever increasing and the risks associated with contact between electrical installations and gases, notably explosive gases, need to be carefully taken into consideration. It is therefore appropriate to use special motors, referred to as explosion proof. This results in a significant on-cost.
The present invention is aimed at an axial ventilation device comprising a plurality of axial fans, in which each axial fan comprises a case ring exhibiting symmetry of revolution extending longitudinally along an axis of the fan, blades arranged inside the case ring and fixed to a hub, a shaft of the axial fan to which the hub is secured, said shaft extending along the axis of the axial fan, at least one motor designed to drive a drive shaft in rotation about the axis of rotation of said motor, in which the motor(s) is (are) situated on the outside of the case ring and the drive shaft(s) is (are) connected to the shaft of the axial fan by a coupling device so as to perform the rotary driving of the shaft of the axial fan. The axial ventilation device may comprise at least three axial fans arranged at the ends of a polygon and that one and the same drive shaft is designed to drive the rotation of at least the shafts of two axial fans.
It is thus possible to create a network of axial fans joined together; this for example makes it possible to increase the level of safety of a ventilation device.
It also results in an improvement in the ventilation capabilities.
The choice of such an axial fan is advantageous because the space occupied by the motor is now moved out of the case ring. It is thus possible to reduce the size of an axial fan and/or to increase the ventilation efficiency thereof by comparison with an axial fan arranged inside the case ring.
Moreover, choosing such an axial fan makes it possible, at least in part, to circumvent the constraints associated with the use of explosive gases, notably known as “ATEX” gases (which refers to “explosive atmospheres”), because the gas no longer encounters any electrical devices in its path. It is thus possible to use motors that are not as expensive as explosion proof motors.
The present invention is also aimed at an axial ventilation device further comprising the features listed in the following embodiments, which may be combined with one another in any technically feasible configuration:
The present invention is also aimed at a premises equipped with at least one axial ventilation device according to any one of the embodiments of the present invention listed hereinabove.
The present invention is also aimed at the use of at least one axial ventilation device according to any one of the embodiments of the present invention listed hereinabove, for transferring energy, under very cold weather conditions, to a gas passing through it (them). What is meant by “very cold” weather conditions is weather conditions in which the outside temperatures are below or equal to −40° C., notably below or equal to −50° C. These conditions are notably encountered in arctic environments.
The following examples illustrate the present invention without, however, limiting same.
The invention will be better understood if reference is made to the attached drawings in which:
It should be noted that the components of the embodiments depicted are not necessarily drawn to scale and that the sole purpose of the figures is to make the present invention easier to understand. The same numerical references correspond to the same components in all the figures.
According to one embodiment, the axial fan 1 is situated inside a building and allows a stream of gas to be moved around within this building.
According to another embodiment, the axial fan 1 is situated in a part of a building at the interface between the inside of the building and the outside of the building; it thus allows a stream of gas to move from inside this building to outside this building.
In the context of the present invention, a component situated between the axis 20 and the case ring 10 will be qualified as being situated “inside” the axial fan and a component situated beyond the case ring 10 when considering an axis passing through the axis 20 and situated in a plane perpendicular to the axis 20 will be considered to be situated “outside” the axial fan.
The “inlet” is the zone situated upstream of the axial fan in the sense of the direction in which the gas flows and the “outlet” is the zone situated downstream of the axial fan in the sense of the direction in which the gas flows. In the diagram of
It should be noted that the case ring 10 is depicted only in part in
The axial fan comprises blades 30 arranged inside the case ring and fixed to a hub 40. A shaft 50 is secured to the hub 40 of the axial fan; this shaft 50 extends along the axis 20 of the axial fan. According to one embodiment, the hub 40 is made of aluminum and the shaft 50 of the axial fan is made of steel. The blades have rotational mobility with respect to the case ring and are driven by the shaft 50.
The axial fan depicted comprises two motors 60 designed each to drive a drive shaft 65 in rotation about the axis of rotation of said motor; the motors are situated on the outside of the case ring and the two drive shafts are connected to the shaft 50 of the axial fan by a coupling device 70 so as to perform the rotary driving of the shaft of the axial fan. The two motors 60 are arranged in such a way that the angle between the axis of the axial fan and the axis of rotation of the motor is 90°; the axes of rotation of these two motors 60 are arranged in one and the same plane perpendicular to the axis of the axial fan.
The coupling device depicted is a gear set device 70 between the shaft 50 of the axial fan and each shaft 65 of the motors 60, made up of a bevel gear set forming a 90° angle transmission. This bevel gear set comprises two bevel gears fixed to the shaft 50 of the axial fan and arranged at 90°; each drive shaft 65 comprises one bevel gear intended to mesh with a bevel gear fixed to the shaft 50 of the axial fan. Each shaft 65 of the motors 60 may be coupled or uncoupled with respect to the bevel gears fixed to the shaft 50. As a result, the shaft 50 of the axial fan can be driven by either by one of the two motors 60 or by both of the two motors 60 simultaneously.
The axial fan depicted comprises two rows of blades each situated in a plane perpendicular to the axis 20 of the axial fan; these two rows of blades rotate in opposite directions by virtue of two coaxial shafts of the axial fan. This then achieves a fan of the so-called “contrarotating” type.
The external ends of the two coaxial shafts of the axial fan are arranged respectively in an inlet bullet 81 and in an outlet bullet 82 and the internal ends of the two coaxial shafts are connected to the coupling device in such a way as to allow them to rotate in two opposite directions.
The inlet bullet 81 and the outlet bullet 82 are each connected and secured to the case ring 10 by three pylons 85.
The axial fan depicted further comprises a profiled convergent nozzle 90 located at the inlet.
The case ring 10 is surrounded by a plurality of annular plates 66, secured to said case ring, arranged in a plane perpendicular to the axis 20 and making it possible to support two plates 64 on which the two motors 60 are positioned; fixings 62 allow each of these motors to be held on the plates 64.
In the example depicted, the axial ventilation device comprises four axial fans 1 arranged at the ends of a polygon of square shape. Each axial fan comprises two motors 60 and each of these motors 60 is connected to another axial fan so as to form a square network.
This setup is advantageous in terms of the safety of the device. This is because should one motor of an axial fan fail, it is possible for this axial fan to be driven using another motor of another axial fan and to continue to operate the axial ventilation device. It is also thus easily possible to change a motor without shutting the device down.
Moreover, the inventors have been able to demonstrate that it is possible to replace the set of 32 fans set out in one embodiment described in patent application WO2011/089578 (the example mentioned on pages 11 to 13 and corresponding to
Such an axial ventilation device may be provided to premises comprising industrial equipment, for example comprising for transferring energy, under very cold weather conditions, to a gas passing through it (them).
The embodiments above are intended to be illustrative and not limiting. Additional embodiments may be within the claims. Although the present invention has been described with reference to particular embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Various modifications to the invention may be apparent to one of skill in the art upon reading this disclosure. For example, persons of ordinary skill in the relevant art will recognize that the various features described for the different embodiments of the invention can be suitably combined, un-combined, and re-combined with other features, alone, or in different combinations, within the spirit of the invention. Likewise, the various features described above should all be regarded as example embodiments, rather than limitations to the scope or spirit of the invention. Therefore, the above is not contemplated to limit the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
13306376.8 | Oct 2013 | EP | regional |
13 60311 | Oct 2013 | FR | national |
1452941 | Apr 2014 | FR | national |
The present application is a National Phase entry of PCT Application No. PCT/FR2014/052467, filed Sep. 30, 2014, which claims priority from EP Patent Application No. 13306376.8, filed Oct. 3, 2013, and which claims priority from FR Patent Application No. 13 60311, and which claims priority from FR Patent Application No. 1452941, said applications being hereby incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2014/052467 | 9/30/2014 | WO | 00 |