Information
-
Patent Grant
-
RE37455
-
Patent Number
RE37,455
-
Date Filed
Friday, July 19, 199628 years ago
-
Date Issued
Tuesday, November 27, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Finnegan, Henderson, Farabow, Garrett & Dunner, L.L.P.
-
-
US Classifications
Field of Search
US
- 360 86
- 360 9807
- 360 9904
- 360 9908
- 369 266
- 369 269
- 369 270
- 310 67 R
- 310 90
-
International Classifications
-
Abstract
An axial compact direct drive for a storage disk comprises a stator, a rotor carrying a hub for receiving storage disks and a bearing arrangement. The bearing arrangement is disposed at a radially external edge of the hub to rotatably support the hub against axial and radial movement. The rotor is electrically driven at locations in the center of the stator or at locations surrounding the stator.
Description
BACKGROUND OF THE INVENTION
The application relates to a storage disk direct drive including a motor and a bearing arrangement for rotatably supporting a hub that carries storage disks. In arrangements of this kind, as a result of the extreme accuracy required as a result of the increasingly small size of the storage disks of 2.5 to 1.8 or even 1.3 inches in diameter (1 inch=25.4 mm), it is difficult to observe the extreme tolerances and to meet the specific quality requirements which must be achieved in these motors. These requirements of errors relate to non-repeatable run out or NRR. In addition, the influence of temperature deviations must be compensated for. Furthermore, a specific load-carrying capacity must be guaranteed for the bearing arrangement and certain resonance frequencies must be avoided.
Therefore, the object of the invention is to design a massproducible subminiature motor by means of which the abovementioned properties are additionally obtained.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described in more detail, by way of example, with reference to the drawings, in which
FIG. 1
is a diagrammatical longitudinal sectional view of an external rotor variant.
FIG. 2
is a diagrammatical longitudinal sectional view of an internal rotor alternative variant.
FIG. 3
is a diagrammatical longitudinal sectional view of an external rotor variant.
FIG. 4
is a diagrammatical longitudinal sectional view of an internal rotor alternative variant.
FIG. 5
is a diagrammatical longitudinal sectional view of an external rotor variant.
FIG. 6
is a diagrammatical longitudinal sectional view of an internal rotor alternative variant.
FIG. 7
is a further embodiment showing a diagrammatical longitudinal sectional view showing the use of an integrated ball bearing.
FIGS. 8 and 9
are a diagrammatical view of filters to be used with the embodiment of
FIG. 7.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIGS. 1
,
3
and
5
show what are referred to as external rotor variants, in which therefore an internal stator
1
with a cylindrical external circumference is rigidly fixed to a base plate
8
, and a permanent magnetic ring
3
is rotatable about the cylindrical external circumference of the internal stator
1
. The magnetic ring, with or without a separate hollow cylindrical magnetic return ring
11
, forms the electromotive drive element in the external rotor, which is in the shape of a cup or a bell and into which this permanent magnetic rings is inserted.
FIGS. 2
,
4
and
6
show as an alternative what are referred to as internal rotor solutions, in which a rotor shaft
6
directly carries a permanent magnetic rotor ring (if necessary, also with the interposition of a soft magnetic, hollow cylindrical return ring), the external circumference of which rotates in the interior of a hollow annular stator iron core which is in turn rigidly connected to a base plate
8
.
The rotor may advantageously comprise hollow cylindrical permanent magnetic rotor magnets (
3
,
4
) having an additional soft magnetic return ring on the surface (
33
,
34
) at the rear side of an air gap between the rotor and the stator.
The common factor in all of the embodiments shown is that the rotating bell or the rotating cup simultaneously forms the disk storage hub and embraces the entire motor radially at its external circumference in such a manner that the drive's bearing arrangement is provided in the external edge region of the rotor, i.e. outside the direct driving motor.
All of the figures are longitudinal sections through the imaginary axis extending from top to bottom in the center of the figures.
In all of the figures, the reference numeral
1
designates an internal stator which is supported from below on the base plate
8
acting as a bearing plate. The same thing applies to the reference numeral
2
, which designates a hollow annular external stator which is also supported directly or indirectly on the plate
8
or is fixedly connected thereto.
The reference numeral
3
designates the annularly arranged external rotor permanent magnets which engage projecting ring parts
17
which are secured to a storage disk hub
5
or are preferably formed in one piece therewith. The reference numeral
3
designates the internal permanent magnetic rotor ring which preferably rotates fixedly connected to a central shaft
6
which passes over into the storage disk hub
5
, expanding radially to a considerable extent in the hub region.
The reference numeral
7
designates a very precise cylindrical locating surface for the storage disks. The very precise locating surface
7
, stepped together with a central disc
5
a and a radially projecting annular disk
14
(
FIGS. 1-4
) and
15
(FIGS.
5
and
6
), form the actual hub element and. As seen in
FIGS. 1 and 2
, a hollow cylindrical projection, forming the magnetic return ring
11
, is integrally cast with these stepped radially projecting annular disks
14
,
15
, at the radially outermost end, so that this hollow magnetic return ring
11
, together with the annular disc
14
of the location surface
7
and the central flange or disk
5
a, defines the bell or cup shape and, moreover, this magnetic return ring
11
is rigidly connected to the outer raceway of a bearing
10
, as shown in
FIGS. 1 and 2
, while the inner raceway the bearing
10
is supported on a ring part
16
projecting axially rigidly from the plate
8
. The ring parts
16
,
17
, the bearing
10
and the hollow cylindrical projection
11
are nested axially into one another so that they are all situated radially concentrically in respect to one another.
Whereas in the embodiment according to
FIG. 2
, the internal stator
1
external stator
2
is supported on the upwardly projecting ring
16
, in the embodiment according to
FIG. 4
, the internal stator
1
is directly connected, e.g. sealed or glued, to the base plate
8
. An outer ring
13
, which, in the case of the embodiment according to
FIG. 4
, projects upwardly from the plate
8
and is connected in one piece therewith, is designed to rotate in the embodiment according to
FIG. 2
, the hollow cylinder
11
, as also shown in
FIGS. 1 and 2
, being formed by the rotating hub. This means that in the case of the embodiment according to
FIGS. 1 and 2
, the outer raceways of the bearings
10
are inserted into the cup-shaped hub and rotate therewith, whereas, in the case of the embodiments of
FIGS. 3 and 4
, the inner raceways of these external bearings
12
rotate with the pulled-down ring wall
17
. In the case of the external rotor motors according to
FIGS. 1
,
3
and
5
, the air gap is designated by the reference numeral
22
, and in
FIGS. 2
,
4
and
6
for the internal rotor variants, the air gap is designated by the reference numeral
23
. In
FIGS. 1
,
3
and
5
, the pulled-down ring parts
17
carry the hollow cylindrical permanent magnetic ring
3
of large diameter which allows for a relatively large air gap surface, so that the magnetic flux passing through the air gap does not need to have an extremely high density as in the case of the embodiments of
FIGS. 2
,
4
and
6
, this allowing the latter to be produced from a less expensive material. In an analogous manner, in the embodiments according to
FIGS. 2
,
4
and
6
, permanent magnetic rings
4
,
6
or ring segments are supported on the preferably ferromagnetic rotor shaft
6
. The shaft
6
, together with the ring or the ring parts
4
, thus forms the internal rotor.
The magnetic storage disks are not only situated on the highly precise cylindrical outer surface
7
, but also lie on the radially projecting shoulders
14
(FIGS.
1
-
4
),
15
(FIGS.
5
and
6
). These shoulders
14
,
15
partly cover the bearings
10
and
12
, particularly in the case of the embodiments according to
FIGS. 3 and 4
, so that it is also possible with respect to the design to provide labyrinth sealing elements at the gaps
28
,
29
. As shown in
FIGS. 1-7
, hub
5
, a magnetic hard data storage disk
102
, and a read head
104
are positioned in a clean chamber or clean room CR, sealed from elements, as readily apparent to those of ordinary skill in the art.
FIGS. 5 and 6
show an arrangement of long axial design intended to drive a plurality of disks. In these embodiments, the cylindrical surface
7
is of longer design. Two bearings
18
,
19
inserted axially on top of one another into the external rotor bell
5
,
24
are provided, separated by a spacer ring
31
on the stator side. In both embodiments according to
FIGS. 5 and 6
, the outer raceways of the bearings
18
,
19
carry the hollow cylindrical wall
24
of the storage disk hub which is pulled down flush with the shoulder
15
reaching as far as the plate
8
. In the embodiments of
FIGS. 1
,
3
and
5
, the central disk
5
which forms the centre center of the hub is, so to speak, shaftless, whereas, in the embodiments of
FIGS. 2
,
4
and
6
, this disc passes over into the central shaft
6
which rotates.
In the case of the embodiments according to
FIGS. 1
,
3
and
5
, the internal stator can also be supported via what is referred to as a vertical shaft, although the bearing means then do not engage this vertical shaft.
In all of the embodiments of the invention (see all of
FIGS. 1
to
6
) it is essential that the elements for the bearing arrangement
10
,
12
,
18
and
19
are situated radially outside the actual motor, i.e. that they surround the latter. The driving motor is then almost inserted into the bearing arrangement.
In view of the criteria mentioned at the outset, this new concept according to the invention has proven to be advantageous in these special motors for a high load-carrying capacity and for good preloading, and also for noise generation and also quiet physical running. These bearing arrangements of relatively large radial design according to the invention also have a larger ball number, this also being advantageous for the required properties.
A further embodiment according to
FIG. 7
(page
4
/
4
of the drawings) shows another arrangement of the invention also of long axial design. In comparison to the previous arrangements, this is characterised characterized in that an integrated ball bearing is provided instead of a conventional ball bearing
12
. This consists of balls
121
, an inner raceway
122
, an outer raceway
123
and a ball cage device
73
. The races preferably have adjacent surfaces in the shape of a truncated cone and are precision turned or ground. The ball cage device
73
is placed on the rotor part
17
. It has finger-like projections, preferably of a plastic material, which separate the balls of the bearing at a suitable spacing. As a result of its dimensions, the ball cage device serves simultaneously as a sealing element in order to keep abraded particles from the region of the bearing arrangement away from the region of the data storage or the magnetic disks, i.e., clean chamber CR. This function is supported by an optionally provided sealing plate
74
. A ventilation device is provided as a further additional measure against contamination of the data storage region, i.e., clean chamber CR. This consists of an inlet opening
71
with an integrated filter (not shown)
802
of cellulose or foam material, and an outlet opening
72
which is also situated in the stator part
13
and is also provided with an integrated filter (not shown)
902
. Integrated filter
802
and integrated filter
902
are shown in FIG.
8
and
FIG. 9
, respectively. A negative pressure is produced at the inlet opening
71
by the rotational movement of the rotor part/hub
5
, so that air is drawn in at this point. On the other hand, excess pressure is produced at the opening
72
, so that the air drawn in at this point escapes and any abraded particles produced are preferably discharged at this point. It will be understood that the arrangement is assembled in the conventional manner, i.e. the rotor part/hub
5
is displaced out of its coaxial position, after which the ball bearing balls are inserted on one side. The rotor part/hub
5
is then returned to its coaxial set position, the balls are distributed by rotation and finally the ball cage device is mounted. According to the invention, the stator
1
is advantageously inserted into and fixed to the arrangement subsequently in order to maintain small air gaps between the stator and the magnet
3
.
Claims
- 1. A storage disk drive, especially for a hard storage disk, comprising a stator, a rotor, a bearing arrangement (10, 12; 18, 19) and a coaxial hub (5, 7) having a radially external edge, to the outer surface of which one or more hard disks are secured, characterised in that the bearing arrangement rotatably supports the hub (5, 7) exclusively in the region of the radially external edge of the hub.
- 2. A storage disk drive according to claim 1, characterised in that the bearing arrangement radially surrounds, the stator and the rotor.
- 3. A storage disk drive according to claim 1 or claim 2, characterised in that the hub (5, 7) is substantially cup-shaped, and that an outer race of at least one ball bearing (10, 18, 19) is secured to a cylindrical inner wall (11, 24) of the hub (5).
- 4. A storage disk drive according to claim 1 or claim 2, characterised in that an outer surface (7) of the hub (5) passes over radially into a flange-like outwardly projecting support (14), an inner ring of at least one ball bearing (12) being arranged on a hollow cylindrical ring part (17) on the other axial side of the hub.
- 5. A storage disk drive according to claim 1 or claim 2, characterised in that the rotor, stator, hub and bearing arrangement are concentric and engaged radially with one another.
- 6. A storage disk drive according to claim 1 or claim 2, characterised in that the bearing arrangement comprises at least one roller bearing (10, 12).
- 7. A storage disk drive according to claim 1 or claim 2, characterised in that the rotor comprises hollow cylindrical permanent magnetic rotor magnets (3, 4) having an additional soft magnetic return ring on the surface (33, 34) at the rear side of an air gap between the rotor and the stator.
- 8. A storage disk drive according to claim 1 or claim 2, characterised in that the rotor comprises hollow cylindrical permanent magnetic rotor magnets (3, 4) having a soft magnetic return ring formed by a hollow cylindrical ring part 17 consisting of a ferromagnetic material on the surface (33, 34) at the rear side of an air gap between the rotor and the stator.
- 9. A storage disk drive according to claim 8, characterised in that the hollow cylindrical ring part 17 is integrally moulded with the hub (5).
- 10. A storage disk drive according to claim 8, characterised in that the hollow cylindrical ring part 17 is coaxially connected to the hub (5) as a separate component.
- 11. A storage disk drive according to claim 1 or claim 2, characterised in that the bearing arrangement comprises an integrated ball bearing comprising an in-wrought ball race (122) on the rotor side.
- 12. A storage disk drive according to claim 1 or claim 2, wherein said bearing arrangement comprises a ball cage device (73) which serves simultaneously as a sealing element.
- 13. A storage disk drive according to any one of the preceding claims, characterised in that a ventilation device is provided, consisting of an inlet opening (71) and an outlet opening (72), the openings (71) and (72) being provided with filter inserts.
- 14. A storage disk drive according to any one of the preceding claims, characterised in that an exchangeable stator part (1) is provided for subsequent mounting in the storage disk drive.
- 15. A storage disk drive, especially for a hard storage disk, comprising a stator, a rotor, a bearing arrangement (10, 12; 18, 19) and a coaxial hub (5, 7) having a radially external edge, to the outer surface of which one or more hard disks are secured, characterised in that the bearing arrangement comprises a bearing disposed in the region of the radially external edge of the hub which rotatably supports the hub against axial and radial movement.
- 16. A disk storage device comprising:a clean room; at least one data storage disk; a data read head for movement in operative relation to the disk within the clean room; a rotatable disk mounting element forming a hub for supporting said storage disk in said clean room, said disk mounting element having a radially external edge; a permanent magnetic ring affixed to said rotatable disk mounting element, said ring having an outer diameter of a first dimension; a stator positioned within said permanent magnetic ring and separated therefrom by a substantially cylindrical air gap, said stator producing magnetic flux interacting with said permanent magnetic ring to rotate said rotatable disk mounting element and said data storage disk; a base plate defining a portion of the clean room, said base plate including a bearing support element defining a circular bearing path having a diameter greater than said first dimension; and bearing means engaging said bearing support element and said rotatable disk mounting element for rotatably supporting the disk mounting element on said base plate exclusively in the region of the radially external edge of said disk mounting element.
- 17. A disk storage device comprising:a clean room defined in part by a base plate; at least one hard storage disk; a data read head for movement in operative relation to the disk within the clean room; a stator; a cylindrical rotor member having an outer diameter of first dimension; a coaxial hub having a radially external edge, to the outer surface of which said hard disk is secured; and a bearing arrangement mounted on said base plate including bearing elements rotatably supporting said coaxial hub exclusively in the region of the radially external edge of said coaxial hub, said bearing elements being restrained to follow a circular bearing path having a diameter greater than said first dimension.
- 18. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read head for movement in operative relation to the disk within the clean room; a rotatable disk mounting element forming a hub for supporting said storage disk in said clean room, said disk mounting element having a radially external edge; a cylindrical bearing support member mounted on said base plate; at least one bearing mounted on the outer surface of said bearing support member and engaging said disk mounting element for supporting the disk mounting element exclusively in the region of the radially external edge for rotation in the clean room; and a motor coupled to said disk mounting element for rotating said disk mounting element and said storage disk, said motor including stator and magnetic rotor elements mounted within said bearing support member.
- 19. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read head for movement in operative relation to the disk within the clean room; a rotatable disk mounting element forming a hub for supporting said storage disk in said clean room, said rotatable disk mounting element having a radially external edge; a cylindrical bearing support member affixed to said rotatable disk mounting element; at least one bearing mounted on the outer surface of said bearing support member and engaging said base plate for supporting said disk mounting element exclusively in the region of the radially external edge for rotation in the clean room; and a motor coupled to said disk mounting element for rotating said disk mounting element and said storage disk, said motor including stator and magnetic rotor elements mounted within said bearing support member.
- 20. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read for movement in operative relation to the disk within the clean room; a stator mounted on said base plate; a hub supporting said data storage disk, said hub having affixed to an inner surface thereof a magnetic element positioned to surround said stator for magnetically interacting therewith to rotate said hub, said hub having a radially external edge; and a bearing arrangement rotatably supporting said hub on said base plate exclusively in the region of the radially external edge of the hub, said bearing arrangement including a plurality of bearing elements and a cage device affixed to said hub for separating said bearing elements, said cage device further arranged to provide a sealing action between said hub and said base plate.
- 21. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read head mounted on the base plate for movement in operative relation to the disk within the clean room; a stator mounted on said base plate; a hub supporting said data storage disk, said hub having affixed to an inner surface thereof a magnetic element positioned to surround said stator for magnetically interacting therewith to rotate said hub, said hub having a radially external edge; a bearing arrangement rotatably supporting said hub on said base plate exclusively in the region of the radially external edge of the hub; and a ventilation arrangement including an inlet opening in said base plate adjacent said stator and an outlet opening in said base plate outside the periphery of said hub, whereby rotation of said hub draws air into said inlet opening and ejects air through said outlet opening so that contaminants from said motor are removed by the flow of air through said outlet opening.
- 22. The drive motor of claim 21, further comprising an air filter mounted in said inlet opening.
- 23. A disk storage device comprising:a clean room; at least one data storage disk; a data head for movement in operative relation to the disk within the clean room; a rotatable disk mounting element forming a hub for supporting said storage disk in said clean room, said disk mounting element having a radially external edge; a permanent magnetic ring affixed to said rotatable disk mounting element, said ring having an outer diameter of a first dimension; a stator positioned within said permanent magnetic ring and separated therefrom by a substantially cylindrical air gap, said stator producing magnetic flux interacting with said permanent magnetic ring to rotate said rotatable disk mounting element and said data storage disk; a base plate defining a portion of the clean room, said base plate including a bearing support element defining a circular bearing path having a diameter greater than said first dimension; and bearing means engaging said bearing support element and said rotatable disk mounting element for rotatably supporting the disk mounting element in the region of the radially external edge against axial and radial movement on said base plate.
- 24. A disk storage device comprising:a clean room defined in part by a base plate; at least one hard storage disk; a data read for movement in operative relation to the disk within the clean room; a stator; a cylindrical rotor member having an outer diameter of first dimension; a coaxial hub having a radially external edge, to the outer surface of which said hard disk is secured; and a bearing arrangement mounted on said base plate including bearing elements rotatably supporting said coaxial hub in the region of the radially external edge against axial and radial movement, said bearing elements being restrained to follow a circular bearing path having a diameter greater than said first dimension.
- 25. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read head for movement in operative relation to the disk within the clean room; a rotatable disk mounting element forming a hub for supporting said storage disk in said clean room, said disk mounting element having a radially external edge; a cylindrical bearing support member mounted on said base plate; at least one bearing mounted on the outer surface of said bearing support member and engaging said disk mounting element to support the disk mounting element in the region of the radially external edge for rotation against axial and radial movement in the clean room; and a motor coupled to said disk mounting element for rotating said disk mounting element and said storage disk, said motor including stator and magnetic rotor elements mounted within said bearing support member.
- 26. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read for movement in operative relation to the disk within the clean room; a rotatable disk mounting element forming a hub for supporting said storage disk in said clean room, said disk mounting element having a radially external edge; a cylindrical bearing support member affixed to said rotatable disk mounting element; at least one bearing mounted on the outer surface of said bearing support member and engaging said base plate for supporting said disk mounting element in the region of the radially external edge for rotation against axial and radial movement in the clean room; and a motor coupled to said disk mounting element for rotating said disk mounting element and said storage disk, said motor including stator and magnetic rotor elements mounted within said bearing support member.
- 27. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read for movement in operative relation to the disk within the clean room; a stator mounted on said base plate; a hub supporting said data storage disk, said hub having affixed to an inner surface thereof a magnetic element positioned to surround said stator for magnetically interacting therewith to rotate said hub, said hub having a radially external edge; and a bearing arrangement rotatably supporting said hub in the region of the radially external edge against axial and radial movement on said base plate, said bearing arrangement including a plurality of bearing elements and a cage device affixed to said hub for separating said bearing elements, said cage device further arranged to provide a sealing action between said hub and said base plate.
- 28. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read head mounted on the base plate for movement in operative relation to the disk within the clean room; a stator mounted on said base plate; a hub supporting said data storage disk, said hub having affixed to an inner surface thereof a magnetic element positioned to surround said stator for magnetically interacting therewith to rotate said hub, said hub having a radially external edge; a bearing arrangement rotatably supporting said hub in the region of the radially external edge against axial and radial movement on said base plate; and a ventilation arrangement including an inlet opening in said base plate adjacent said stator and an outlet opening in said base plate outside the periphery of said hub, whereby rotation of said hub draws air into said inlet opening and ejects air through said outlet opening so that contaminants from said motor are removed by the flow of air through said outlet opening.
- 29. The drive motor of claim 28, further comprising an air filter mounted in said inlet opening.
- 30. A disk storage device comprising:a clean room defined in part by a base plate; one or more hard data storage disks; a data read head mounted on the base plate for movement in operative relation to the disk within the clean room; a stator; a rotor; a bearing arrangement and a coaxial hub having a radially external edge, to the outer surface of which the one or more hard disks are secured, characterized in that the bearing arrangement comprises a bearing disposed in the region of the radially external edge of the hub which rotatably supports the hub against axial and radial movement.
Priority Claims (1)
Number |
Date |
Country |
Kind |
41 21 693 |
Jul 1991 |
DE |
|
US Referenced Citations (17)
Foreign Referenced Citations (3)
Number |
Date |
Country |
3538480 |
Oct 1985 |
DE |
0 392 500 |
Apr 1990 |
EP |
62-73458 |
Apr 1987 |
JP |
Divisions (1)
|
Number |
Date |
Country |
Parent |
07/907516 |
Jul 1992 |
US |
Child |
08/690246 |
|
US |
Reissues (1)
|
Number |
Date |
Country |
Parent |
07/907516 |
Jul 1992 |
US |
Child |
08/690246 |
|
US |