Axially compact direct drive for storage disk hub

Information

  • Patent Grant
  • RE37455
  • Patent Number
    RE37,455
  • Date Filed
    Friday, July 19, 1996
    27 years ago
  • Date Issued
    Tuesday, November 27, 2001
    22 years ago
Abstract
An axial compact direct drive for a storage disk comprises a stator, a rotor carrying a hub for receiving storage disks and a bearing arrangement. The bearing arrangement is disposed at a radially external edge of the hub to rotatably support the hub against axial and radial movement. The rotor is electrically driven at locations in the center of the stator or at locations surrounding the stator.
Description




BACKGROUND OF THE INVENTION




The application relates to a storage disk direct drive including a motor and a bearing arrangement for rotatably supporting a hub that carries storage disks. In arrangements of this kind, as a result of the extreme accuracy required as a result of the increasingly small size of the storage disks of 2.5 to 1.8 or even 1.3 inches in diameter (1 inch=25.4 mm), it is difficult to observe the extreme tolerances and to meet the specific quality requirements which must be achieved in these motors. These requirements of errors relate to non-repeatable run out or NRR. In addition, the influence of temperature deviations must be compensated for. Furthermore, a specific load-carrying capacity must be guaranteed for the bearing arrangement and certain resonance frequencies must be avoided.




Therefore, the object of the invention is to design a massproducible subminiature motor by means of which the abovementioned properties are additionally obtained.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will now be described in more detail, by way of example, with reference to the drawings, in which





FIG. 1

is a diagrammatical longitudinal sectional view of an external rotor variant.





FIG. 2

is a diagrammatical longitudinal sectional view of an internal rotor alternative variant.





FIG. 3

is a diagrammatical longitudinal sectional view of an external rotor variant.





FIG. 4

is a diagrammatical longitudinal sectional view of an internal rotor alternative variant.





FIG. 5

is a diagrammatical longitudinal sectional view of an external rotor variant.





FIG. 6

is a diagrammatical longitudinal sectional view of an internal rotor alternative variant.





FIG. 7

is a further embodiment showing a diagrammatical longitudinal sectional view showing the use of an integrated ball bearing.






FIGS. 8 and 9

are a diagrammatical view of filters to be used with the embodiment of

FIG. 7.













DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIGS. 1

,


3


and


5


show what are referred to as external rotor variants, in which therefore an internal stator


1


with a cylindrical external circumference is rigidly fixed to a base plate


8


, and a permanent magnetic ring


3


is rotatable about the cylindrical external circumference of the internal stator


1


. The magnetic ring, with or without a separate hollow cylindrical magnetic return ring


11


, forms the electromotive drive element in the external rotor, which is in the shape of a cup or a bell and into which this permanent magnetic rings is inserted.





FIGS. 2

,


4


and


6


show as an alternative what are referred to as internal rotor solutions, in which a rotor shaft


6


directly carries a permanent magnetic rotor ring (if necessary, also with the interposition of a soft magnetic, hollow cylindrical return ring), the external circumference of which rotates in the interior of a hollow annular stator iron core which is in turn rigidly connected to a base plate


8


.




The rotor may advantageously comprise hollow cylindrical permanent magnetic rotor magnets (


3


,


4


) having an additional soft magnetic return ring on the surface (


33


,


34


) at the rear side of an air gap between the rotor and the stator.




The common factor in all of the embodiments shown is that the rotating bell or the rotating cup simultaneously forms the disk storage hub and embraces the entire motor radially at its external circumference in such a manner that the drive's bearing arrangement is provided in the external edge region of the rotor, i.e. outside the direct driving motor.




All of the figures are longitudinal sections through the imaginary axis extending from top to bottom in the center of the figures.




In all of the figures, the reference numeral


1


designates an internal stator which is supported from below on the base plate


8


acting as a bearing plate. The same thing applies to the reference numeral


2


, which designates a hollow annular external stator which is also supported directly or indirectly on the plate


8


or is fixedly connected thereto.




The reference numeral


3


designates the annularly arranged external rotor permanent magnets which engage projecting ring parts


17


which are secured to a storage disk hub


5


or are preferably formed in one piece therewith. The reference numeral


3


designates the internal permanent magnetic rotor ring which preferably rotates fixedly connected to a central shaft


6


which passes over into the storage disk hub


5


, expanding radially to a considerable extent in the hub region.




The reference numeral


7


designates a very precise cylindrical locating surface for the storage disks. The very precise locating surface


7


, stepped together with a central disc


5


a and a radially projecting annular disk


14


(

FIGS. 1-4

) and


15


(FIGS.


5


and


6


), form the actual hub element and. As seen in

FIGS. 1 and 2

, a hollow cylindrical projection, forming the magnetic return ring


11


, is integrally cast with these stepped radially projecting annular disks


14


,


15


, at the radially outermost end, so that this hollow magnetic return ring


11


, together with the annular disc


14


of the location surface


7


and the central flange or disk


5


a, defines the bell or cup shape and, moreover, this magnetic return ring


11


is rigidly connected to the outer raceway of a bearing


10


, as shown in

FIGS. 1 and 2

, while the inner raceway the bearing


10


is supported on a ring part


16


projecting axially rigidly from the plate


8


. The ring parts


16


,


17


, the bearing


10


and the hollow cylindrical projection


11


are nested axially into one another so that they are all situated radially concentrically in respect to one another.




Whereas in the embodiment according to

FIG. 2

, the internal stator


1


external stator


2


is supported on the upwardly projecting ring


16


, in the embodiment according to

FIG. 4

, the internal stator


1


is directly connected, e.g. sealed or glued, to the base plate


8


. An outer ring


13


, which, in the case of the embodiment according to

FIG. 4

, projects upwardly from the plate


8


and is connected in one piece therewith, is designed to rotate in the embodiment according to

FIG. 2

, the hollow cylinder


11


, as also shown in

FIGS. 1 and 2

, being formed by the rotating hub. This means that in the case of the embodiment according to

FIGS. 1 and 2

, the outer raceways of the bearings


10


are inserted into the cup-shaped hub and rotate therewith, whereas, in the case of the embodiments of

FIGS. 3 and 4

, the inner raceways of these external bearings


12


rotate with the pulled-down ring wall


17


. In the case of the external rotor motors according to

FIGS. 1

,


3


and


5


, the air gap is designated by the reference numeral


22


, and in

FIGS. 2

,


4


and


6


for the internal rotor variants, the air gap is designated by the reference numeral


23


. In

FIGS. 1

,


3


and


5


, the pulled-down ring parts


17


carry the hollow cylindrical permanent magnetic ring


3


of large diameter which allows for a relatively large air gap surface, so that the magnetic flux passing through the air gap does not need to have an extremely high density as in the case of the embodiments of

FIGS. 2

,


4


and


6


, this allowing the latter to be produced from a less expensive material. In an analogous manner, in the embodiments according to

FIGS. 2

,


4


and


6


, permanent magnetic rings


4


,


6


or ring segments are supported on the preferably ferromagnetic rotor shaft


6


. The shaft


6


, together with the ring or the ring parts


4


, thus forms the internal rotor.




The magnetic storage disks are not only situated on the highly precise cylindrical outer surface


7


, but also lie on the radially projecting shoulders


14


(FIGS.


1


-


4


),


15


(FIGS.


5


and


6


). These shoulders


14


,


15


partly cover the bearings


10


and


12


, particularly in the case of the embodiments according to

FIGS. 3 and 4

, so that it is also possible with respect to the design to provide labyrinth sealing elements at the gaps


28


,


29


. As shown in

FIGS. 1-7

, hub


5


, a magnetic hard data storage disk


102


, and a read head


104


are positioned in a clean chamber or clean room CR, sealed from elements, as readily apparent to those of ordinary skill in the art.

FIGS. 5 and 6

show an arrangement of long axial design intended to drive a plurality of disks. In these embodiments, the cylindrical surface


7


is of longer design. Two bearings


18


,


19


inserted axially on top of one another into the external rotor bell


5


,


24


are provided, separated by a spacer ring


31


on the stator side. In both embodiments according to

FIGS. 5 and 6

, the outer raceways of the bearings


18


,


19


carry the hollow cylindrical wall


24


of the storage disk hub which is pulled down flush with the shoulder


15


reaching as far as the plate


8


. In the embodiments of

FIGS. 1

,


3


and


5


, the central disk


5


which forms the centre center of the hub is, so to speak, shaftless, whereas, in the embodiments of

FIGS. 2

,


4


and


6


, this disc passes over into the central shaft


6


which rotates.




In the case of the embodiments according to

FIGS. 1

,


3


and


5


, the internal stator can also be supported via what is referred to as a vertical shaft, although the bearing means then do not engage this vertical shaft.




In all of the embodiments of the invention (see all of

FIGS. 1

to


6


) it is essential that the elements for the bearing arrangement


10


,


12


,


18


and


19


are situated radially outside the actual motor, i.e. that they surround the latter. The driving motor is then almost inserted into the bearing arrangement.




In view of the criteria mentioned at the outset, this new concept according to the invention has proven to be advantageous in these special motors for a high load-carrying capacity and for good preloading, and also for noise generation and also quiet physical running. These bearing arrangements of relatively large radial design according to the invention also have a larger ball number, this also being advantageous for the required properties.




A further embodiment according to

FIG. 7

(page


4


/


4


of the drawings) shows another arrangement of the invention also of long axial design. In comparison to the previous arrangements, this is characterised characterized in that an integrated ball bearing is provided instead of a conventional ball bearing


12


. This consists of balls


121


, an inner raceway


122


, an outer raceway


123


and a ball cage device


73


. The races preferably have adjacent surfaces in the shape of a truncated cone and are precision turned or ground. The ball cage device


73


is placed on the rotor part


17


. It has finger-like projections, preferably of a plastic material, which separate the balls of the bearing at a suitable spacing. As a result of its dimensions, the ball cage device serves simultaneously as a sealing element in order to keep abraded particles from the region of the bearing arrangement away from the region of the data storage or the magnetic disks, i.e., clean chamber CR. This function is supported by an optionally provided sealing plate


74


. A ventilation device is provided as a further additional measure against contamination of the data storage region, i.e., clean chamber CR. This consists of an inlet opening


71


with an integrated filter (not shown)


802


of cellulose or foam material, and an outlet opening


72


which is also situated in the stator part


13


and is also provided with an integrated filter (not shown)


902


. Integrated filter


802


and integrated filter


902


are shown in FIG.


8


and

FIG. 9

, respectively. A negative pressure is produced at the inlet opening


71


by the rotational movement of the rotor part/hub


5


, so that air is drawn in at this point. On the other hand, excess pressure is produced at the opening


72


, so that the air drawn in at this point escapes and any abraded particles produced are preferably discharged at this point. It will be understood that the arrangement is assembled in the conventional manner, i.e. the rotor part/hub


5


is displaced out of its coaxial position, after which the ball bearing balls are inserted on one side. The rotor part/hub


5


is then returned to its coaxial set position, the balls are distributed by rotation and finally the ball cage device is mounted. According to the invention, the stator


1


is advantageously inserted into and fixed to the arrangement subsequently in order to maintain small air gaps between the stator and the magnet


3


.



Claims
  • 1. A storage disk drive, especially for a hard storage disk, comprising a stator, a rotor, a bearing arrangement (10, 12; 18, 19) and a coaxial hub (5, 7) having a radially external edge, to the outer surface of which one or more hard disks are secured, characterised in that the bearing arrangement rotatably supports the hub (5, 7) exclusively in the region of the radially external edge of the hub.
  • 2. A storage disk drive according to claim 1, characterised in that the bearing arrangement radially surrounds, the stator and the rotor.
  • 3. A storage disk drive according to claim 1 or claim 2, characterised in that the hub (5, 7) is substantially cup-shaped, and that an outer race of at least one ball bearing (10, 18, 19) is secured to a cylindrical inner wall (11, 24) of the hub (5).
  • 4. A storage disk drive according to claim 1 or claim 2, characterised in that an outer surface (7) of the hub (5) passes over radially into a flange-like outwardly projecting support (14), an inner ring of at least one ball bearing (12) being arranged on a hollow cylindrical ring part (17) on the other axial side of the hub.
  • 5. A storage disk drive according to claim 1 or claim 2, characterised in that the rotor, stator, hub and bearing arrangement are concentric and engaged radially with one another.
  • 6. A storage disk drive according to claim 1 or claim 2, characterised in that the bearing arrangement comprises at least one roller bearing (10, 12).
  • 7. A storage disk drive according to claim 1 or claim 2, characterised in that the rotor comprises hollow cylindrical permanent magnetic rotor magnets (3, 4) having an additional soft magnetic return ring on the surface (33, 34) at the rear side of an air gap between the rotor and the stator.
  • 8. A storage disk drive according to claim 1 or claim 2, characterised in that the rotor comprises hollow cylindrical permanent magnetic rotor magnets (3, 4) having a soft magnetic return ring formed by a hollow cylindrical ring part 17 consisting of a ferromagnetic material on the surface (33, 34) at the rear side of an air gap between the rotor and the stator.
  • 9. A storage disk drive according to claim 8, characterised in that the hollow cylindrical ring part 17 is integrally moulded with the hub (5).
  • 10. A storage disk drive according to claim 8, characterised in that the hollow cylindrical ring part 17 is coaxially connected to the hub (5) as a separate component.
  • 11. A storage disk drive according to claim 1 or claim 2, characterised in that the bearing arrangement comprises an integrated ball bearing comprising an in-wrought ball race (122) on the rotor side.
  • 12. A storage disk drive according to claim 1 or claim 2, wherein said bearing arrangement comprises a ball cage device (73) which serves simultaneously as a sealing element.
  • 13. A storage disk drive according to any one of the preceding claims, characterised in that a ventilation device is provided, consisting of an inlet opening (71) and an outlet opening (72), the openings (71) and (72) being provided with filter inserts.
  • 14. A storage disk drive according to any one of the preceding claims, characterised in that an exchangeable stator part (1) is provided for subsequent mounting in the storage disk drive.
  • 15. A storage disk drive, especially for a hard storage disk, comprising a stator, a rotor, a bearing arrangement (10, 12; 18, 19) and a coaxial hub (5, 7) having a radially external edge, to the outer surface of which one or more hard disks are secured, characterised in that the bearing arrangement comprises a bearing disposed in the region of the radially external edge of the hub which rotatably supports the hub against axial and radial movement.
  • 16. A disk storage device comprising:a clean room; at least one data storage disk; a data read head for movement in operative relation to the disk within the clean room; a rotatable disk mounting element forming a hub for supporting said storage disk in said clean room, said disk mounting element having a radially external edge; a permanent magnetic ring affixed to said rotatable disk mounting element, said ring having an outer diameter of a first dimension; a stator positioned within said permanent magnetic ring and separated therefrom by a substantially cylindrical air gap, said stator producing magnetic flux interacting with said permanent magnetic ring to rotate said rotatable disk mounting element and said data storage disk; a base plate defining a portion of the clean room, said base plate including a bearing support element defining a circular bearing path having a diameter greater than said first dimension; and bearing means engaging said bearing support element and said rotatable disk mounting element for rotatably supporting the disk mounting element on said base plate exclusively in the region of the radially external edge of said disk mounting element.
  • 17. A disk storage device comprising:a clean room defined in part by a base plate; at least one hard storage disk; a data read head for movement in operative relation to the disk within the clean room; a stator; a cylindrical rotor member having an outer diameter of first dimension; a coaxial hub having a radially external edge, to the outer surface of which said hard disk is secured; and a bearing arrangement mounted on said base plate including bearing elements rotatably supporting said coaxial hub exclusively in the region of the radially external edge of said coaxial hub, said bearing elements being restrained to follow a circular bearing path having a diameter greater than said first dimension.
  • 18. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read head for movement in operative relation to the disk within the clean room; a rotatable disk mounting element forming a hub for supporting said storage disk in said clean room, said disk mounting element having a radially external edge; a cylindrical bearing support member mounted on said base plate; at least one bearing mounted on the outer surface of said bearing support member and engaging said disk mounting element for supporting the disk mounting element exclusively in the region of the radially external edge for rotation in the clean room; and a motor coupled to said disk mounting element for rotating said disk mounting element and said storage disk, said motor including stator and magnetic rotor elements mounted within said bearing support member.
  • 19. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read head for movement in operative relation to the disk within the clean room; a rotatable disk mounting element forming a hub for supporting said storage disk in said clean room, said rotatable disk mounting element having a radially external edge; a cylindrical bearing support member affixed to said rotatable disk mounting element; at least one bearing mounted on the outer surface of said bearing support member and engaging said base plate for supporting said disk mounting element exclusively in the region of the radially external edge for rotation in the clean room; and a motor coupled to said disk mounting element for rotating said disk mounting element and said storage disk, said motor including stator and magnetic rotor elements mounted within said bearing support member.
  • 20. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read for movement in operative relation to the disk within the clean room; a stator mounted on said base plate; a hub supporting said data storage disk, said hub having affixed to an inner surface thereof a magnetic element positioned to surround said stator for magnetically interacting therewith to rotate said hub, said hub having a radially external edge; and a bearing arrangement rotatably supporting said hub on said base plate exclusively in the region of the radially external edge of the hub, said bearing arrangement including a plurality of bearing elements and a cage device affixed to said hub for separating said bearing elements, said cage device further arranged to provide a sealing action between said hub and said base plate.
  • 21. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read head mounted on the base plate for movement in operative relation to the disk within the clean room; a stator mounted on said base plate; a hub supporting said data storage disk, said hub having affixed to an inner surface thereof a magnetic element positioned to surround said stator for magnetically interacting therewith to rotate said hub, said hub having a radially external edge; a bearing arrangement rotatably supporting said hub on said base plate exclusively in the region of the radially external edge of the hub; and a ventilation arrangement including an inlet opening in said base plate adjacent said stator and an outlet opening in said base plate outside the periphery of said hub, whereby rotation of said hub draws air into said inlet opening and ejects air through said outlet opening so that contaminants from said motor are removed by the flow of air through said outlet opening.
  • 22. The drive motor of claim 21, further comprising an air filter mounted in said inlet opening.
  • 23. A disk storage device comprising:a clean room; at least one data storage disk; a data head for movement in operative relation to the disk within the clean room; a rotatable disk mounting element forming a hub for supporting said storage disk in said clean room, said disk mounting element having a radially external edge; a permanent magnetic ring affixed to said rotatable disk mounting element, said ring having an outer diameter of a first dimension; a stator positioned within said permanent magnetic ring and separated therefrom by a substantially cylindrical air gap, said stator producing magnetic flux interacting with said permanent magnetic ring to rotate said rotatable disk mounting element and said data storage disk; a base plate defining a portion of the clean room, said base plate including a bearing support element defining a circular bearing path having a diameter greater than said first dimension; and bearing means engaging said bearing support element and said rotatable disk mounting element for rotatably supporting the disk mounting element in the region of the radially external edge against axial and radial movement on said base plate.
  • 24. A disk storage device comprising:a clean room defined in part by a base plate; at least one hard storage disk; a data read for movement in operative relation to the disk within the clean room; a stator; a cylindrical rotor member having an outer diameter of first dimension; a coaxial hub having a radially external edge, to the outer surface of which said hard disk is secured; and a bearing arrangement mounted on said base plate including bearing elements rotatably supporting said coaxial hub in the region of the radially external edge against axial and radial movement, said bearing elements being restrained to follow a circular bearing path having a diameter greater than said first dimension.
  • 25. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read head for movement in operative relation to the disk within the clean room; a rotatable disk mounting element forming a hub for supporting said storage disk in said clean room, said disk mounting element having a radially external edge; a cylindrical bearing support member mounted on said base plate; at least one bearing mounted on the outer surface of said bearing support member and engaging said disk mounting element to support the disk mounting element in the region of the radially external edge for rotation against axial and radial movement in the clean room; and a motor coupled to said disk mounting element for rotating said disk mounting element and said storage disk, said motor including stator and magnetic rotor elements mounted within said bearing support member.
  • 26. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read for movement in operative relation to the disk within the clean room; a rotatable disk mounting element forming a hub for supporting said storage disk in said clean room, said disk mounting element having a radially external edge; a cylindrical bearing support member affixed to said rotatable disk mounting element; at least one bearing mounted on the outer surface of said bearing support member and engaging said base plate for supporting said disk mounting element in the region of the radially external edge for rotation against axial and radial movement in the clean room; and a motor coupled to said disk mounting element for rotating said disk mounting element and said storage disk, said motor including stator and magnetic rotor elements mounted within said bearing support member.
  • 27. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read for movement in operative relation to the disk within the clean room; a stator mounted on said base plate; a hub supporting said data storage disk, said hub having affixed to an inner surface thereof a magnetic element positioned to surround said stator for magnetically interacting therewith to rotate said hub, said hub having a radially external edge; and a bearing arrangement rotatably supporting said hub in the region of the radially external edge against axial and radial movement on said base plate, said bearing arrangement including a plurality of bearing elements and a cage device affixed to said hub for separating said bearing elements, said cage device further arranged to provide a sealing action between said hub and said base plate.
  • 28. A disk storage device comprising:a clean room defined in part by a base plate; at least one data storage disk; a data read head mounted on the base plate for movement in operative relation to the disk within the clean room; a stator mounted on said base plate; a hub supporting said data storage disk, said hub having affixed to an inner surface thereof a magnetic element positioned to surround said stator for magnetically interacting therewith to rotate said hub, said hub having a radially external edge; a bearing arrangement rotatably supporting said hub in the region of the radially external edge against axial and radial movement on said base plate; and a ventilation arrangement including an inlet opening in said base plate adjacent said stator and an outlet opening in said base plate outside the periphery of said hub, whereby rotation of said hub draws air into said inlet opening and ejects air through said outlet opening so that contaminants from said motor are removed by the flow of air through said outlet opening.
  • 29. The drive motor of claim 28, further comprising an air filter mounted in said inlet opening.
  • 30. A disk storage device comprising:a clean room defined in part by a base plate; one or more hard data storage disks; a data read head mounted on the base plate for movement in operative relation to the disk within the clean room; a stator; a rotor; a bearing arrangement and a coaxial hub having a radially external edge, to the outer surface of which the one or more hard disks are secured, characterized in that the bearing arrangement comprises a bearing disposed in the region of the radially external edge of the hub which rotatably supports the hub against axial and radial movement.
Priority Claims (1)
Number Date Country Kind
41 21 693 Jul 1991 DE
US Referenced Citations (17)
Number Name Date Kind
1915090 Hammond Jun 1933
2207251 Guedon Jul 1940
4072315 Tsujihara et al. Feb 1978
4072874 Arnold, Jr. Feb 1978
4488193 Davis et al. Dec 1984
4599664 Schuh Jul 1986
4656545 Kakuta Apr 1987
4658312 Elsässer et al. Apr 1987
4887175 Hoshi Dec 1989
4943748 Shiozawa Jul 1990
5012359 Kohno et al. Apr 1991
5013947 Ide May 1991
5015893 Shiozawa May 1991
5045738 Hishida et al. Sep 1991
5079656 Hoshi Jan 1992
5193084 Christiaens Mar 1993
5200866 Frugé et al. Apr 1993
Foreign Referenced Citations (3)
Number Date Country
3538480 Oct 1985 DE
0 392 500 Apr 1990 EP
62-73458 Apr 1987 JP
Divisions (1)
Number Date Country
Parent 07/907516 Jul 1992 US
Child 08/690246 US
Reissues (1)
Number Date Country
Parent 07/907516 Jul 1992 US
Child 08/690246 US