Axially-shortening prosthetic valve

Abstract
A catheter is transluminally advanced to a heart of a subject. Via the catheter, a prosthetic valve is advanced to the native valve. The prosthetic valve includes an upstream skirt, and a downstream skirt that has a first portion and a second portion. The first portion defines a lumen therethrough. The second portion circumscribes the first portion, and defines a plurality of anchoring arms that are coupled to the second portion. A plurality of prosthetic leaflets, within the lumen, are attached to the first portion. The upstream skirt is expanded in the atrium, and the anchoring arms are expanded in the ventricle, the anchoring arms extending radially outward and toward the upstream skirt. Subsequently, native valve tissue is squeezed between the upstream skirt and the anchoring arms by causing the anchoring arms to move with respect to the prosthetic leaflets, and toward the upstream skirt.
Description
FIELD OF EMBODIMENTS OF THE INVENTION

Embodiments of the present invention relate in general to valve replacement. More specifically, embodiments of the present invention relate to prosthetic valves for minimally-invasive replacement of an atrioventricular valve.


BACKGROUND

Ischemic heart disease causes regurgitation of a heart valve by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the ventricle that is present in ischemic heart disease, with the subsequent displacement of the papillary muscles and the dilatation of the valve annulus.


Dilation of the annulus of the valve prevents the valve leaflets from fully coapting when the valve is closed. Regurgitation of blood from the ventricle into the atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the ventricle secondary to a volume overload and a pressure overload of the atrium.


SUMMARY OF APPLICATIONS

For some applications of the present invention, a collapsible prosthetic valve is configured for implantation in and/or at least partial replacement of a native atrioventricular valve of a patient, such as a native mitral valve or a native tricuspid valve. The prosthetic valve is configured to assume a collapsed state for minimally-invasive delivery to the diseased native valve, such as by percutaneous or transluminal delivery using one or more catheters. The prosthetic valve comprises a collapsible flexible support, which is at least partially covered by a covering. The prosthetic valve is shaped so as to define a downstream skirt and an upstream annular skirt. The downstream skirt is configured to be placed at the native valve, such that the downstream skirt passes through the orifice of the native valve and extends towards, and, typically partially into, a ventricle. The downstream skirt typically pushes aside and presses against the native leaflets of the native valve, which are typically left in place during and after implantation of the prosthetic valve. The upstream annular skirt is configured to be placed around a native annulus of the native valve, and to extend at least partially into an atrium such that annular skirt rests against the native annulus.


There is therefore provided, in accordance with some applications of the present invention, apparatus including a prosthetic atrioventricular valve for coupling to a native atrioventricular valve, the prosthetic valve including:


a support frame;


a covering, which at least partially covers the support frame, the support frame and the covering being shaped so as to define a downstream skirt;


a plurality of prosthetic leaflets, coupled to at least one element selected from the group consisting of: the support frame and the covering; and


an elongated anchoring member, configured to be positioned around the downstream skirt in a subvalvular space, such that the anchoring member presses native leaflets of the native valve against the downstream skirt, thereby anchoring the prosthetic valve to the native valve.


For some applications, the elongated anchoring member is configured to be positioned completely around the downstream skirt.


For some applications, the prosthetic valve further includes a contracting housing shaped so as to define a channel therethrough, a first end of the anchoring member is fixed to the contracting housing, and a second end of the anchoring member passes through the channel.


For some applications, the prosthetic valve is configured to assume collapsed and expanded states.


There is further provided. in accordance with some applications of the present invention, apparatus including a prosthetic atrioventricular valve for coupling to a native atrioventricular valve, the prosthetic valve including:


a support frame;


a covering, which at least partially covers the support frame, the support frame and the covering being shaped so as to define a downstream skirt;


a plurality of prosthetic leaflets, coupled to at least one element selected from the group consisting of: the support frame and the covering; and


a plurality of subvalvular anchoring elements, coupled to the downstream skirt, and configured to anchor the prosthetic valve to the native valve by piercing native leaflets of the native valve, passing through to a subvalvular space, and applying a force against the ventricular surface of the native leaflets.


For some applications, the prosthetic valve is configured to assume collapsed and expanded states.


For some applications, each of the tissue coupling elements is shaped as an element selected from the group consisting of: a hollow needle, a solid needle, a rod, and a rectangular plate.


For some applications, the tissue coupling elements are configured to assume a curved shape when in resting states.


For some applications, the tissue coupling elements are shaped so as to define respective barbs.


For some applications, the tissue coupling elements include needles.


For some applications. the needles are configured to assume curved shapes when in resting states.


For some applications, the needles are shaped so as to define respective lumens, and the apparatus further includes an implantation tool, which includes a plurality of rigid rods initially positioned in the lumens, respectively, so as to at least partially straighten the needles.


For some applications, the needles include a shape memory alloy.


There is additionally provided, in accordance with some applications of the present invention, apparatus including a prosthetic atrioventricular valve for coupling at a native valve, the prosthetic valve including:


a support frame;


a covering, which at least partially covers the support frame, the support frame and the covering being shaped so as to define an upstream annular skirt;


a plurality of prosthetic leaflets, coupled to at least one element selected from the group consisting of: the support frame and the covering;


a plurality of longitudinal members, coupled to the upstream annular skirt at respective sites; and


a plurality of tissue anchors, configured to be guided along the longitudinal members, respectively, and to couple the upstream annular skirt to cardiac tissue in a vicinity of the native valve.


For some applications, the prosthetic valve is configured to assume collapsed and expanded states.


For some applications, the tissue anchors are configured to pass over the respective longitudinal members.


For some applications, the longitudinal members include respective wires, and the tissue anchors are configured to be guided along the respective wires.


For some applications, each of the tissue anchors includes a coupling element that is shaped so as to define a shape selected from the group consisting of: a helix, a spiral, a corkscrew, and a screw shaft.


For some applications, the longitudinal members are removably coupled to the upstream annular skirt at the respective sites.


For some applications, the prosthetic valve further includes a downstream skirt.


For some applications, the prosthetic valve further includes a ventricular anchoring assembly, which includes:


a ventricular tissue anchor; and


a ventricular longitudinal member, a first end of which is coupled to the support structure, and a second end of which is coupled to the ventricular tissue anchor.


There is further provided, in accordance with some applications of the present invention, a method including:


providing a prosthetic atrioventricular valve, which includes (a) a support frame, (b) a covering, which at least partially covers the support frame, the support frame and the covering being shaped so as to define a downstream skirt, (c) a plurality of prosthetic leaflets, coupled to at least one element selected from the group consisting of: the support frame and the covering, and (d) an elongated anchoring member;


placing the prosthetic valve at a native valve of a subject, such that the downstream skirt passes through an orifice of the native valve toward a ventricle of the subject; and


anchoring the prosthetic valve to the native valve by positioning the elongated anchoring member around the downstream skirt in a subvalvular space, such that the anchoring member presses native leaflets of the native valve against the downstream skirt.


For some applications, the prosthetic valve further includes a contracting housing shaped so as to define a channel therethrough, a first end of the anchoring member being fixed to the contracting housing, and a second end of the anchoring member passing through the channel, and anchoring further includes pulling on the second end of the anchoring member to tighten the anchoring member around the native leaflets.


For some applications, placing the prosthetic valve includes delivering the prosthetic valve to the native valve while the prosthetic valve is in a collapsed state in a catheter, and deploying the prosthetic valve from the catheter such that prosthetic valve assumes an expanded state.


There is further provided, in accordance with some applications of the present invention, a method including:


providing a prosthetic atrioventricular valve, which includes (a) a support frame, (b) a covering, which at least partially covers the support frame, the support frame and the covering being shaped so as to define a downstream skirt, (c) a plurality of prosthetic leaflets, coupled to at least one element selected from the group consisting of: the support frame and the covering, and (d) a plurality of subvalvular anchoring elements, coupled to the downstream skirt;


placing the prosthetic valve at a native valve of a subject, such that the downstream skirt passes through an orifice of the native valve toward a ventricle of the subject; and


anchoring the prosthetic valve to the native valve by causing the subvalvular anchoring elements to pierce native leaflets of the native valve, pass through to a subvalvular space, and apply a force against the ventricular surface of the native leaflets.


For some applications, placing the prosthetic valve includes delivering the prosthetic valve to the native valve while the prosthetic valve is in a collapsed state in a catheter, and deploying the prosthetic valve from the catheter such that the prosthetic valve assumes an expanded state.


For some applications, placing includes placing the prosthetic valve such that the downstream skirt pushes aside and presses against the native leaflets.


For some applications, the needles are shaped so as to define respective lumens, and anchoring includes causing the subvalvular anchoring elements to pierce the native leaflets while a rigid rods are initially positioned in the lumens, respectively, so as to at least partially straighten the needles, and subsequently withdrawing the rods from the lumens.


There is further provided, in accordance with some applications of the present invention, a method including:


providing a prosthetic atrioventricular valve, which includes (a) a support frame, (b) a covering, which at least partially covers the support frame, the support frame and the covering being shaped so as to define an upstream annular skirt, (c) a plurality of prosthetic leaflets, coupled to at least one element selected from the group consisting of: the support frame and the covering, and (d) a plurality of longitudinal members, coupled to the upstream annular skirt at respective sites;


placing the prosthetic valve at a native valve of a subject, such that the upstream annular skirt rests against a native annulus of the native valve, and the longitudinal members extend into an atrium of the subject;


guiding a plurality of tissue anchors along the longitudinal members, respectively; and


using the anchors, coupling the upstream annular skirt to cardiac tissue in a vicinity of the native valve.


For some applications, the method further includes decoupling the elongated members from the upstream annular skirt.


For some applications, the method further includes, after placing the prosthetic valve at the native valve and before coupling the upstream annular skirt to the cardiac tissue using the tissue anchors, temporarily anchoring the prosthetic valve to a ventricular wall of the subject using one or more ventricular cords.


For some applications, placing the prosthetic valve includes delivering the prosthetic valve to the native valve while the prosthetic valve is in a collapsed state in a catheter, and deploying the prosthetic valve from the catheter such that the prosthetic valve assumes an expanded state.


For some applications, placing the prosthetic valve includes placing the prosthetic valve at the native valve such that the longitudinal members pass through the catheter.


For some applications, the prosthetic valve further includes a downstream skirt, and placing includes placing the prosthetic valve at the native valve such the downstream skirt passes through an orifice of the native valve toward a ventricle of the subject.


For some applications, placing includes placing the prosthetic valve such that the downstream skirt pushes aside and presses against native leaflets of the native valve.


The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a collapsible prosthetic valve, in accordance with an application of the present invention;



FIGS. 2A-B are schematic illustrations of a technique for anchoring the prosthetic valve of FIG. 1 at a native valve, in accordance with an application of the present invention;



FIGS. 3A-B are schematic illustrations of another technique for anchoring the prosthetic valve of FIG. 1 at the native valve, in accordance with an application of the present invention;



FIGS. 4A-C are schematic illustrations of yet another technique for anchoring the prosthetic valve of FIG. 1 at the native valve, in accordance with respective applications of the present invention;



FIGS. 5A-C are schematic illustrations of additional techniques for anchoring the prosthetic valve of FIG. 1 at the native valve, in accordance with respective applications of the present invention;



FIG. 6 is a schematic illustration of yet another technique for anchoring the prosthetic valve of FIG. 1 at the native valve, in accordance with an application of the present invention;



FIG. 7 is a schematic illustration of still another technique for anchoring the prosthetic valve of FIG. 1 at the native valve, in accordance with an application of the present invention; and



FIGS. 8A-G are schematic illustrations of a valve contraction tool and a procedure for the use thereof, in accordance with an application of the present invention.





DETAILED DESCRIPTION OF APPLICATIONS


FIG. 1 is a schematic illustration of a collapsible prosthetic valve 10, in accordance with an application of the present invention. Prosthetic valve 10 is configured for implantation in and/or at least partial replacement of a native atrioventricular valve 12 of a patient, such as a native mitral valve or a native tricuspid valve. The prosthetic valve is typically configured to assume a collapsed state for minimally-invasive delivery to the diseased native valve, such as by percutaneous or transluminal delivery using one or more catheters. FIG. 1 and the other figures show the prosthetic valve in an expanded state after delivery to the native valve.


Prosthetic valve 10 comprises a collapsible flexible support frame 20, which is at least partially covered by a covering 22. The prosthetic valve is shaped so as to define a downstream skirt 24 and an upstream annular skirt 26. The downstream skirt is configured to be placed at native valve 12, such that the downstream skirt passes through the orifice of the native valve and extends towards, and, typically partially into, a ventricle 28. The downstream skirt typically pushes aside and presses against native leaflets 30 of native valve 12, which are typically left in place during and after implantation of the prosthetic valve. The upstream annular skirt is configured to be placed around a native annulus 32 of the native valve, and to extend at least partially into an atrium 34 such that annular skirt rests against the native annulus. The annular skirt is typically too large to pass through the annulus, and may, for example, have an outer diameter of between 30 and 60 mm.


For some applications, collapsible support frame 20 comprises a stent, which comprises a plurality of struts. The struts may comprise, for example, a metal such as Nitinol or stainless steel. For some applications, covering 22 comprises a fabric, such as a woven fabric, e.g., Dacron. Covering 22 is typically configured to cover at least a portion of downstream skirt 24, and at least a portion of upstream annular skirt 26, such as the entire annular skirt (as shown in FIG. 1). The covering may comprise a single piece, or a plurality of pieces sewn together.


Prosthetic valve 10 further comprises a plurality of valve leaflets 40, which may be artificial or tissue-based. The leaflets are typically coupled to an inner surface of the valve prosthesis, such as near the junction between the downstream and upstream skirts 24 and 26. The leaflets are coupled, e.g., sewn, to frame 20 and/or covering 22. For applications in which the prosthetic valve is configured to be implanted at the native mitral valve, the prosthetic valve typically comprises three leaflets 40, such as shown in FIG. 1.


For some applications, such as shown in FIG. 1, prosthetic valve 10 comprises a plurality of tissue anchors 50 for coupling the prosthetic valve to native valve 12, such as the mitral valve. The anchors are typically distributed approximately evenly around upstream annular skirt 26, and couple the upstream skirt to native annulus 32. Typically, each of anchors 50 comprises a tissue-coupling element 52 coupled to a base 54. Tissue-coupling element 52 is configured to pass through upstream annular skirt 26 and penetrate the tissue of the native annulus, and may, for example, be shaped as a corkscrew, spiral, helix, or screw shaft. Base 54 is configured to be too large to pass through the upstream annular skirt. The tissue-coupling element is advanced into the tissue, such as by rotation, until the base comes in contact with and is held tightly against the upstream side of the upstream annular skirt, thus creating a seal between the upstream skirt and the native annulus. For some applications, prosthetic valve 10 comprises between 5 and 20 anchors, such as between 10 and 15 anchors. e.g., 15 anchors. It is noted that, unlike in some prior techniques for coupling prosthetic valves to native valve sites, sutures are typically not used for coupling prosthetic valve 10 to the native valve site.


Reference is now made to FIGS. 2A-B, which are schematic illustrations of a technique for anchoring prosthetic valve 10 at native valve 12, in accordance with an application of the present invention. In this application, prosthetic valve 10 is at least initially coupled to a plurality of flexible elongated members 70, such as wires, cords, or sutures. Elongated members 70 are typically removably coupled to upstream annular skirt 26 at respective sites at which respective anchors 50 subsequently pass through the skirt.


As shown in FIG. 2A, during an implantation procedure, the surgeon places prosthetic valve 10 at a desired location at native valve 12. Elongated members 70 extend into atrium 34, and typically pass through a catheter 72 used to perform the implantation procedure, optionally the same catheter through which prosthetic valve 10 is deployed into the atrium. Optionally, the prosthetic valve is temporarily held in place using the anchoring techniques described hereinbelow with reference to FIGS. 4A-C (or permanently held in place using such anchoring, in combination with the anchoring described hereinbelow with reference to FIG. 2B). For example, the prosthetic valve may be temporarily anchored to the ventricular wall, such as to the apex or one or more papillary muscles, using one or more ventricular cords, as described hereinbelow.


Subsequently, as shown in FIG. 2B, each of anchors 50 is guided along (e.g., passed over, or alongside) a respective one of elongated members 70, until the anchor reaches upstream annular skirt 26. The anchor is coupled to cardiac tissue, such as by using a rotation tool 71 that is separately passed over each of elongated members 70. Typically, the elongated member is then decoupled from upstream annular skirt 26. For example, a cutting tool may be used to decouple the elongated member from the skirt; the cutting tool may be passed through catheter 72, and/or guided along the elongated member. Alternatively, the elongated member may be looped through the skirt, such that both ends of the elongated member remain outside of the patient's body. The surgeon decouples the elongated member from the skirt by releasing one end of the elongated member and pulling on the other end, until the elongated member is drawn from the skirt. Alternatively, the elongated member is cut at some distance from upstream annular skirt 26, such that a portion ofthe elongated member remains coupled to the upstream annular skirt. These steps are repeated for each of the anchors and elongated members.


These techniques enable the surgeon to readily bring the anchors to the appropriate sites of the upstream annular skirt, without the need for excessive imaging, such as fluoroscopy.


Reference is made to FIGS. 3A-B, which are schematic illustrations of another technique for anchoring prosthetic valve 10 at native valve 12, in accordance with an application of the present invention. In this application, anchors 50 are initially coupled to respective flexible elongated members 70, such as wires, cords, or sutures. For some applications, each of the anchors comprises an upstream post 73, to which a respective elongated member 70 is coupled. Optionally, the posts comprise a flexible material, such as silicone.


As shown in FIG. 3A, during an implantation procedure, the surgeon couples anchors 70 to respective sites of cardiac tissue on native annulus 32. For example, the surgeon may use a rotation tool passed along (e.g., over or alongside) each of elongated members 70.


Subsequently, as shown in FIG. 3B, the surgeon passes prosthetic valve 10 over elongated members 70, until the prosthetic valve reaches the native valve and upstream annular skirt 26 rests against the atrial side of native annulus 32. In order to guide the prosthetic valve to the anchors and desired anatomical position, elongated members 70 pass through respective locations on upstream annular skirt 26. Upstream annular skirt 26 is then coupled to the anchors, e.g., posts 73 thereof, to hold the prosthetic valve in place at the native annulus, creating a seal between the upstream skirt and the native annulus. This anchoring technique typically reshapes the native annulus to assume a rounder shape, similar to that of the prosthetic valve.


For some applications, respective coupling elements 74 are used to couple the skirt to the posts of the anchors. The coupling elements may be passed over elongated members 70. For example, the coupling elements may be shaped as discs with inwardly-facing teeth that engage the posts, and prevent removal of the disc from the posts. The elongated members are subsequently decoupled from anchors 50. For example, a cutting tool may be used to decouple the elongated members from the anchors; the cutting tool may be passed through catheter 72, and/or guided along the elongated member. Alternatively, the elongated members may be looped through the anchors, such that both ends of each elongated member remain outside of the patient's body. The surgeon decouples the elongated member from the anchor by releasing one end of the elongated member and pulling on the other end, until the elongated member is drawn from the anchor.


Reference is made to FIGS. 4A-C, which are schematic illustrations of another technique for anchoring prosthetic valve 10 at native valve 12, in accordance with respective applications of the present invention. In these applications, prosthetic valve 10 is held in place at native valve 12 by a ventricular anchoring assembly. The ventricular anchoring assembly comprises one or more ventricular longitudinal members, such as ventricular cords 102, and one or more respective ventricular tissue anchors 50, described hereinabove. The ventricular cords are coupled, using the respective anchors, to respective ventricular sites, such as respective papillary muscles 100 (as shown in FIGS. 4A-C) or other locations of the ventricular wall, such as near the apex of ventricle 28 (configuration not shown). The cords pull prosthetic valve 10 toward ventricle 28, such that upstream annular skirt 26 is pulled tightly against native annulus 32. As mentioned above, the upstream annular skirt is too large to pass through the native annulus, and is thus held in place by the cords.


For some applications, in order to tense ventricular cords 102, prosthetic valve 10 and upstream portions 110 of the cords are configured to provide one-way upstream motion of the cords with respect to the prosthetic valve, and to prevent distal motion of the cords. For example, upstream portions 110 of the cords may be shaped so as to define a one-way ratchet, which can pass through upstream annular skirt 26 in an upstream direction, but not in a downstream direction. After the cords have been anchored to the ventricular sites and the prosthetic valve has been placed in position at the native annulus, the surgeon pulls upstream on the upstream ends of the cords, in order to tense the cords. Optionally, as shown in FIGS. 4B and 4C, upstream annular skirt 26 comprises ratcheting elements 112, through which ratcheted upstream portions 110 of ventricular cords 102 pass, in order to prevent such downstream motion.


For some applications, in order to provide access to anchors 50 during coupling of the anchors to the ventricular sites, the surgeon first introduces the anchors and cords into the ventricle, thereafter couples the anchors to the ventricular sites, and subsequently positions the prosthetic valve at the native annulus. The cords may pass between downstream skirt 24 and native leaflets 30 (as shown in FIGS. 4A-C), or through the downstream skirt (configuration not shown).


For some applications, as shown in FIG. 4C, the surgeon crosses cords 102 in the ventricle, such that the cords assume an X-shape when viewed from the side. Such crossing may provide firmer anchoring of the prosthetic valve to the native annulus.


For some applications, the coupling techniques described with reference to FIGS. 4A-C effect ventricular remodeling, in addition to or instead of anchoring the prosthetic valve to the native valve site.


For some applications, instead of being coupled to upstream annular skirt 26 (as shown in FIGS. 4A-C), cords 102 are alternatively or additionally coupled to downstream skirt 24, such as to struts of the support frame thereof, e.g., at or near a downstream end of the downstream skirt (configuration not shown).


Reference is made to FIGS. 5A-C, which are schematic illustrations of additional techniques for anchoring prosthetic valve 10 at native valve 12, in accordance with respective applications of the present invention. In these applications, prosthetic valve 10 comprises one or more subvalvular anchoring elements 120, which are configured to pierce native leaflets 30 and pass through to a subvalvular space. Anchoring elements 120 are typically shaped and positioned to apply a force against the ventricular surface of native leaflets 30, thereby holding upstream annular skirt 26 against the native annulus. The anchoring elements are generally elongated (e.g., have a length of between 2 and 7 mm), and may, for example, be shaped as hollow needles, solid needles, rods, or rectangular plates. The anchoring elements typically comprise a metal, such as Nitinol.


For some applications, as shown in FIG. 5A, distal ends of anchoring elements 120 are curved toward upstream annular skirt 26, and thus toward the ventricular surface of the native annulus when the prosthetic valve is implanted. For other applications, as shown in FIG. 5B, the distal ends of the anchoring elements are folded. Alternatively or additionally (i.e., optionally in combination with the application shown in FIG. 5A or the application shown in FIG. 5B), the distal ends of the anchoring elements are shaped so as to define respective barbs 124, as shown in FIG. 5C.


For some applications, as shown in FIG. 5A, the anchoring elements are configured to assume a curved shape when in resting states. In order to more readily pierce the native leaflets, the anchoring elements are configured to initially assume a straighter shape during the implantation procedure. For example, as shown as configuration “A” of FIG. 5A, rigid rods 122 may be initially inserted into the lumens of the anchoring elements, which are shaped as hollow needles, in order to at least partially straighten the anchoring elements. After the anchoring elements have penetrated the native leaflets, rods 122 are withdrawn from the anchoring elements, and the anchoring elements assume their curved shapes, as shown as configuration “B” of FIG. 5A. For some applications, an implantation tool is provided that comprises rods 122. This technique may additionally be used in combination with the application shown in FIG. 5B or the application shown in FIG. 5C. Alternatively or additionally, the anchoring elements comprises a shape memory alloy that is configured to initially assume a straighter shape, e.g., at a first temperature, and subsequently a curved shape, e.g., at a second temperature.


Reference is made to FIG. 6, which is a schematic illustration of yet another technique for anchoring prosthetic valve 10 at native valve 12, in accordance with an application of the present invention. In this application, prosthetic valve 10 comprises an elongated anchoring member 152, such as a cord, strip, wire, or suture. Anchoring member 152 is configured to be positioned around at least a radial portion of downstream skirt 24 and be positioned in a subvalvular space 150. When tightened, the anchoring member squeezes native leaflets 30 against downstream skirt 24, thereby fixing prosthetic valve 10 in place at the native valve, and creating a seal between the valve prosthesis and the native leaflets. For some applications, anchoring member 152 is positioned completely around, i.e., surrounds, downstream skirt 24. For some applications, the anchoring member is introduced into the subvalvular space and brought around the native leaflets using a guidewire that is introduced around the leaflets tangential to native annulus 32.


For some applications, valve prosthesis 10 further comprises a contracting housing 154. Typically, a first end of anchoring member 152 is fixed to the contracting housing, and a second end of the anchoring member passes through a channel of the contracting housing. Pulling on the second end of the anchoring member tightens the anchoring member around the native leaflets. For some applications, an upstream portion of the anchoring member is shaped so as to define a ratchet, which allows tightening, but not loosening, of the anchoring member.


Reference is made to FIG. 7. which is a schematic illustration of still another technique for anchoring prosthetic valve 10 at native valve 12, in accordance with an application of the present invention. In this application, downstream skirt 24 is shaped so as to define a plurality of anchoring arms 180, which extend in an upstream direction from a downstream end of downstream skirt 24 (as shown in FIG. 7), or from locations near the downstream end of the downstream skirt (configuration not shown). The coupling arms are configured to be positioned in the subvalvular space.


Prosthetic valve 10 is configured to assume two states: (a) an extended, unlocked state 182, shown as configuration “A” of FIG. 7, and (b) a contracted, locked state 184, shown as configuration “B” of FIG. 7. A longitudinal length of prosthetic valve 10 along a central longitudinal axis 186 thereof is greater when the prosthetic valve is in extended, unlocked state 182, than when the prosthetic valve is in contracted, locked state 184. The prosthetic valve is typically configured to allow one-way passage from unlocked state 182 to locked state 184. For example, mating downstream and upstream portions 188 and 190 of downstream skirt 24 may be shaped so as to define corresponding ratchet teeth 192, which allow downstream portion 188 to move in an upstream direction with respect to upstream portion 190, but not in a downstream direction with respect thereto. (In this regard, upstream portion 190 is a first portion 190a of the downstream skirt, and downstream portion 188 is a second portion 188a of the downstream skirt.)


During an implantation procedure, prosthetic valve 10 initially assumes extended, unlocked state 182. The prosthetic valve is advanced to native valve 12 in this unlocked state, and anchoring arms 180 are positioned such that native leaflets 30 are between the anchoring arms and the body of downstream skirt 24. The surgeon causes the prosthetic valve to assume contracted, locked state 184. In locked state 184 the anchoring arms squeeze and grasp native leaflets 30 and a portion of native annulus 32 between the anchoring arms, the body of the downstream skirt 24, and upstream annular skirt 26. In this application, upstream annular skirt 26 may comprise relative short upstream arms 194, which may correspond to and be aligned with anchoring arms 180 of downstream skirt 24. Optionally, upstream arms 194 may comprise one or more spikes 196, which are configured to pierce native annulus 32 in order to aid with anchoring.



FIGS. 8A-G are schematic illustrations of a valve contraction tool 200 and a procedure for the use thereof, in accordance with an application of the present invention. Valve contraction tool 200 is optionally used with the configuration of prosthetic valve 10 described hereinabove with reference to FIG. 7, in order to cause prosthetic valve 10 to transition from extended, unlocked state 182 to contracted, locked state 184.


As best seen in FIG. 8E, tool 200 comprises a catheter 220, and an upstream pushing tube (not shown), a downstream end of which is coupled to an upstream pushing adaptor 212. Upstream pushing adaptor 212 is configured to assume an umbrella-like shape when expanded, forming a downstream ring that is sized to rest and push against upstream annular skirt 26. Tool 200 further comprises a downstream pulling adaptor 214, which is coupled to a pulling wire 216. Downstream pulling adaptor 214 is configured to rest against the downstream end of downstream skirt 24. Pulling wire 216 is coupled to the downstream pulling adaptor (e.g., at a center thereof), and passes through upstream pushing adaptor 212 and the upstream pushing tube.


For some applications, a procedure using tool 200 begins with the introduction of catheter 220, as shown in FIG. 8A. Catheter 220 is advanced through the lumen of prosthetic valve 10, until a downstream cap 222 of the catheter passes entirely through the prosthetic valve, as shown in FIG. 8B.


As shown in FIG. 8C, downstream cap 222 is extended downstream from a downstream adaptor holder 224, releasing downstream pulling adaptor 214 from downstream adaptor holder 224. Upon release, downstream pulling adaptor 214 expands. Pulling wire 216 is pulled in an upstream direction, pulling downstream pulling adaptor 214 against downstream portion 188 of downstream skirt 24, as shown in FIG. 8D.


As shown in FIG. 8E, upstream pushing adaptor 212 is deployed from catheter 220 against upstream annular skirt 26. In order to longitudinally contract prosthetic valve 10, the surgeon pulls pulling wire 216 in an upstream direction, while simultaneously pushing on the pushing tube in a downstream direction. The pushing tube pushes upstream pushing adaptor 212 against upstream annular skirt 26, thereby holding the annular skirt against native annulus 32, and holding upstream portion 190 of downstream skirt 24 stationary. Pulling wire 216 pulls on downstream pulling adaptor 214, causing the downstream pulling adaptor to pull downstream portion 188 of downstream skirt 24 toward upstream portion 190, thereby contracting the prosthetic valve.


Upstream pushing adaptor 212 is retracted into catheter 220, and downstream pulling adaptor 214 is retracted into downstream adaptor holder 224, as shown in FIG. 8F. Pulling wire 216 pulls adaptor holder 224 and downstream cap 222 against the body of catheter 220, and the catheter is withdrawn from prosthetic valve 10, as shown in FIG. 8G.


Although prosthetic valve 10 has been described herein as being configured for implantation in and/or at least partial replacement of a native atrioventricular valve, for some applications prosthetic valve 10 is configured for implantation in and/or at least partial replacement of a native aortic valve or a native pulmonary valve, mutatis mutandis.


It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims
  • 1. A method for use at an atrioventricular valve that has an annulus and is disposed between an atrium and a ventricle of a heart of a subject, the method comprising: transluminally advancing a catheter to the heart;via the catheter, advancing to the heart a prosthetic valve including: an upstream annular skirt,a downstream skirt having: a first portion defining a lumen therethrough, anda second portion circumscribing the first portion,a plurality of anchoring arms, each of the anchoring arms having a first end that is coupled to the second portion, and an opposite end that is a free end, anda plurality of prosthetic leaflets attached to the first portion and disposed within the lumen;expanding the upstream annular skirt in the atrium and expanding the anchoring arms in the ventricle such that: the upstream annular skirt becomes disposed over the annulus, andeach of the anchoring arms becomes oriented to lead in a direction from the first end to the opposite end, the direction being radially outward and toward the upstream annular skirt; andsubsequently to expanding the upstream annular skirt in the atrium, and while each of the anchoring arms remains oriented to lead in the direction from the first end to the opposite end, squeezing tissue of the atrioventricular valve between the upstream annular skirt and the anchoring arms by causing the second portion of the downstream skirt and the anchoring arms to move: (i) with respect to the prosthetic leaflets, and(ii) toward the upstream annular skirt.
  • 2. The method according to claim 1, wherein: the first end of each of the anchoring arms is coupled to a downstream portion of the second portion, andadvancing the prosthetic valve comprises advancing the prosthetic valve in which the first end of each of the anchoring arms is coupled to the downstream portion of the second portion.
  • 3. The method according to claim 2, wherein: the first end of each of the anchoring arms is coupled to a downstream end of the second portion, andadvancing the prosthetic valve comprises advancing the prosthetic valve in which the first end of each of the anchoring arms is coupled to the downstream end of the second portion.
  • 4. The method according to claim 1, wherein causing the second portion of the downstream skirt and the anchoring arms to move with respect to the leaflets and toward the upstream annular skirt comprises causing the prosthetic valve to move from an extended, unlocked state into a contracted, locked state.
  • 5. The method according to claim 1, wherein the downstream skirt defines a plurality of ratchet teeth, and causing the second portion of the downstream skirt and the anchoring arms to move with respect to the leaflets and toward the upstream annular skirt comprises causing mating between ratchet teeth of the plurality of ratchet teeth.
  • 6. The method according to claim 1, wherein the upstream annular skirt includes a plurality of skirt arms, and expanding the upstream support portion in the atrium comprises expanding the upstream support portion in the atrium such that the plurality of skirt arms extend radially outward.
  • 7. The method according to claim 6, wherein each skirt arm is aligned with a respective one of the anchoring arms, and causing the anchoring arms to move with respect to the leaflets and toward the upstream annular skirt comprises causing each skirt arm to become closer to its respective one of the anchoring arms.
  • 8. The method according to claim 7, wherein the upstream annular skirt includes exactly 12 skirt arms, and the second portion of the downstream skirt defines exactly 12 anchoring arms.
  • 9. The method according to claim 1, wherein causing the second portion of the downstream skirt and the anchoring arms to move with respect to the leaflets and toward the upstream annular skirt comprises using a tool to apply (i) an upstream force to the downstream skirt, and (ii) a downstream force to the upstream annular skirt.
  • 10. The method according to claim 9, further comprising expanding an upstream adapter of the tool, and expanding a downstream adapter of the tool, wherein using the tool to apply the upstream force and the downstream force comprises (i) using the downstream adapter to apply the upstream force to the downstream skirt, and (ii) using the upstream adapter to apply the downstream force to the upstream annular skirt.
  • 11. The method according to claim 9, wherein the method further comprises, subsequently to expanding the upstream annular skirt in the atrium and expanding the anchoring arms in the ventricle, transluminally advancing the tool to the prosthetic valve.
  • 12. The method according to claim 11, wherein transluminally advancing the tool to the prosthetic valve comprises transluminally advancing the downstream adapter through the lumen of the first portion.
  • 13. The method according to claim 1, further comprising advancing a tool via the catheter to the heart, such that a downstream portion of the tool is disposed within the ventricle downstream of the prosthetic valve, and wherein causing the second portion of the downstream skirt and the anchoring arms to move with respect to the leaflets and toward the upstream annular skirt comprises causing the second portion of the downstream skirt and the anchoring arms to move with respect to the leaflets and toward the upstream annular skirt by moving the downstream portion of the tool longitudinally with respect to the prosthetic valve.
  • 14. The method according to claim 13, wherein the downstream portion of the tool comprises a downstream cap.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation of U.S. patent application Ser. No. 15/729,107 to HaCohen, entitled “Techniques for securing prosthetic valves using helical anchors,” filed Oct. 10, 2017, which published as US 2018/0028311, and which is a Continuation of U.S. patent application Ser. No. 14/626,267 to HaCohen, entitled “Axially-shortening prosthetic valve,” filed Feb. 19, 2015 (now U.S. Pat. No. 9,788,941), which is a Divisional of U.S. patent application Ser. No. 13/044,694 to HaCohen, entitled “Prosthetic mitral valve with tissue anchors,” filed Mar. 10, 2011 (now abandoned), and which claims priority from U.S. Provisional Application 61/312,412, filed Mar. 10, 2010, entitled, “Prosthetic mitral valve with tissue anchors,” which is assigned to the assignee of the present application and is incorporated herein by reference. The present application is related to international patent application PCT IL2011/000231 entitled “Prosthetic mitral valve with tissue anchors,” filed Mar. 10, 2011, which published as WO 2011/111047, which is assigned to the assignee of the present application and is incorporated herein by reference.

US Referenced Citations (990)
Number Name Date Kind
3874388 King et al. Apr 1975 A
4222126 Boretos et al. Sep 1980 A
4261342 Aranguren Duo Apr 1981 A
4340091 Skelton et al. Jul 1982 A
4423525 Vallana et al. Jan 1984 A
4853986 Allen Aug 1989 A
4892541 Alonso Jan 1990 A
4972494 White et al. Nov 1990 A
5108420 Marks Apr 1992 A
5314473 Godin May 1994 A
5405378 Strecker Apr 1995 A
5443500 Sigwart Aug 1995 A
5607444 Lam Mar 1997 A
5607470 Milo Mar 1997 A
5647857 Anderson et al. Jul 1997 A
5713948 Uflacker Feb 1998 A
5716417 Girard et al. Feb 1998 A
5741297 Simon Apr 1998 A
5765682 Bley et al. Jun 1998 A
5776140 Cottone Jul 1998 A
5868777 Lam Feb 1999 A
5873906 Lau et al. Feb 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5980565 Jayaraman Nov 1999 A
6010530 Goicoechea Jan 2000 A
6019787 Richard et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6074417 Peredo Jun 2000 A
6113612 Swanson et al. Sep 2000 A
6120534 Ruiz Sep 2000 A
6152937 Peterson et al. Nov 2000 A
6165183 Kuehn et al. Dec 2000 A
6165210 Lau et al. Dec 2000 A
6187020 Zegdi et al. Feb 2001 B1
6193745 Fogarty et al. Feb 2001 B1
6264700 Kilcoyne et al. Jul 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6312465 Griffin et al. Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6334873 Lane et al. Jan 2002 B1
6346074 Roth Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352561 Leopold et al. Mar 2002 B1
6391036 Berg et al. May 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6409755 Vrba Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6428550 Vargas et al. Aug 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6511491 Grudem et al. Jan 2003 B2
6530952 Vesely Mar 2003 B2
6540782 Snyders Apr 2003 B1
6551350 Thornton et al. Apr 2003 B1
6558396 Inoue May 2003 B1
6558418 Carpentier et al. May 2003 B2
6569196 Vesely May 2003 B1
6602263 Swanson et al. Aug 2003 B1
6616675 Evard et al. Sep 2003 B1
6652556 VanTassel et al. Nov 2003 B1
6669724 Park et al. Dec 2003 B2
6682558 Tu et al. Jan 2004 B2
6699256 Logan et al. Mar 2004 B1
6716244 Klaco Apr 2004 B2
6719781 Kim Apr 2004 B1
6730118 Spenser et al. May 2004 B2
6730121 Ortiz et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764518 Godin Jul 2004 B2
6767362 Schreck Jul 2004 B2
6797002 Spence et al. Sep 2004 B2
6821297 Snyders Nov 2004 B2
6830585 Artof et al. Dec 2004 B1
6830638 Boylan et al. Dec 2004 B2
6893460 Spenser et al. May 2005 B2
6926715 Hauck et al. Aug 2005 B1
6960217 Bolduc Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
7011681 Vesely Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7041132 Quijano et al. May 2006 B2
7077861 Spence Jul 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7137184 Schreck Nov 2006 B2
7172625 Shu et al. Feb 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7226477 Cox Jun 2007 B2
7288097 Séguin Oct 2007 B2
7288111 Holloway et al. Oct 2007 B1
7316716 Egan Jan 2008 B2
7329279 Haug et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7351256 Hojeibane et al. Apr 2008 B2
7374573 Gabbay May 2008 B2
7377938 Sarac et al. May 2008 B2
7381218 Schreck Jun 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7422603 Lane Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445630 Lashinski et al. Nov 2008 B2
7455677 Vargas et al. Nov 2008 B2
7455688 Furst et al. Nov 2008 B2
7462162 Phan et al. Dec 2008 B2
7481838 Carpentier et al. Jan 2009 B2
7510575 Spenser et al. Mar 2009 B2
7513909 Lane et al. Apr 2009 B2
7524331 Birdsall Apr 2009 B2
7527646 Rahdert et al. May 2009 B2
7556632 Zadno Jul 2009 B2
7556646 Yang et al. Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7582111 Krolik et al. Sep 2009 B2
7585321 Cribier Sep 2009 B2
7597711 Drews et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7611534 Kapadia et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7625403 Krivoruchko Dec 2009 B2
7632302 Vreeman et al. Dec 2009 B2
7635329 Goldfarb et al. Dec 2009 B2
7648528 Styrc Jan 2010 B2
7655015 Goldfarb et al. Feb 2010 B2
7682380 Thornton et al. Mar 2010 B2
7708775 Rowe et al. May 2010 B2
7717952 Case et al. May 2010 B2
7717955 Lane et al. May 2010 B2
7731741 Eidenschink Jun 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753922 Starksen Jul 2010 B2
7758595 Allen et al. Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7758640 Vesely Jul 2010 B2
7771467 Svensson Aug 2010 B2
7771469 Liddicoat Aug 2010 B2
7776083 Vesely Aug 2010 B2
7780726 Seguin Aug 2010 B2
7799069 Bailey et al. Sep 2010 B2
7803181 Furst et al. Sep 2010 B2
7811296 Goldfarb et al. Oct 2010 B2
7811316 Kalmann et al. Oct 2010 B2
7824442 Salahieh et al. Nov 2010 B2
7837645 Bessler et al. Nov 2010 B2
7837727 Goetz et al. Nov 2010 B2
7842081 Yadin Nov 2010 B2
7850725 Vardi et al. Dec 2010 B2
7871432 Bergin Jan 2011 B2
7871436 Ryan et al. Jan 2011 B2
7887583 Macoviak Feb 2011 B2
7892281 Seguin et al. Feb 2011 B2
7896915 Guyenot et al. Mar 2011 B2
7914544 Nguyen et al. Mar 2011 B2
7914569 Nguyen et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7942927 Kaye et al. May 2011 B2
7947072 Yang et al. May 2011 B2
7947075 Goetz et al. May 2011 B2
7951195 Antonsson et al. May 2011 B2
7955375 Agnew Jun 2011 B2
7955377 Melsheimer Jun 2011 B2
7955384 Rafiee et al. Jun 2011 B2
7959666 Salahieh et al. Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7967833 Sterman et al. Jun 2011 B2
7967857 Lane Jun 2011 B2
7981151 Rowe Jul 2011 B2
7981153 Fogarty et al. Jul 2011 B2
7992567 Hirotsuka et al. Aug 2011 B2
7993393 Carpentier et al. Aug 2011 B2
8002825 Letac et al. Aug 2011 B2
8002826 Seguin Aug 2011 B2
8016877 Seguin et al. Sep 2011 B2
8016882 Macoviak et al. Sep 2011 B2
8021420 Dolan Sep 2011 B2
8021421 Fogarty et al. Sep 2011 B2
8025695 Fogarty et al. Sep 2011 B2
8029518 Goldfarb et al. Oct 2011 B2
8029557 Sobrino-Serrano et al. Oct 2011 B2
8029564 Johnson et al. Oct 2011 B2
8034104 Carpentier et al. Oct 2011 B2
8038720 Wallace et al. Oct 2011 B2
8043360 McNamara et al. Oct 2011 B2
8048138 Sullivan et al. Nov 2011 B2
8048140 Purdy Nov 2011 B2
8048153 Salahieh et al. Nov 2011 B2
8052592 Goldfarb et al. Nov 2011 B2
8052741 Bruszewski et al. Nov 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8057493 Goldfarb et al. Nov 2011 B2
8057532 Hoffman Nov 2011 B2
8057540 Letac et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8070708 Rottenberg et al. Dec 2011 B2
8070800 Lock et al. Dec 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8070804 Hyde et al. Dec 2011 B2
8075611 Millwee et al. Dec 2011 B2
8080054 Rowe Dec 2011 B2
8083793 Lane et al. Dec 2011 B2
D652927 Braido et al. Jan 2012 S
D653341 Braido et al. Jan 2012 S
8092518 Schreck Jan 2012 B2
8092520 Quadri Jan 2012 B2
8092521 Figulla et al. Jan 2012 B2
8105377 Liddicoat Jan 2012 B2
8109996 Stacchino et al. Feb 2012 B2
8118866 Herrmann et al. Feb 2012 B2
8133270 Kheradvar et al. Mar 2012 B2
8136218 Millwee et al. Mar 2012 B2
8137398 Tuval et al. Mar 2012 B2
8142492 Forster et al. Mar 2012 B2
8142494 Rahdert et al. Mar 2012 B2
8142496 Berreklouw Mar 2012 B2
8142497 Friedman Mar 2012 B2
8147504 Ino et al. Apr 2012 B2
8157852 Bloom et al. Apr 2012 B2
8157853 Laske et al. Apr 2012 B2
8157860 McNamara et al. Apr 2012 B2
8163008 Wilson et al. Apr 2012 B2
8163014 Lane et al. Apr 2012 B2
D660433 Braido et al. May 2012 S
D660967 Braido et al. May 2012 S
8167894 Miles et al. May 2012 B2
8167932 Bourang et al. May 2012 B2
8167935 McGuckin, Jr. et al. May 2012 B2
8172896 McNamara et al. May 2012 B2
8172898 Alferness et al. May 2012 B2
8177836 Lee et al. May 2012 B2
8182528 Salahieh et al. May 2012 B2
8211169 Lane et al. Jul 2012 B2
8216256 Raschdorf, Jr. et al. Jul 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8221492 Case et al. Jul 2012 B2
8221493 Boyle et al. Jul 2012 B2
8226710 Nguyen et al. Jul 2012 B2
8231670 Salahieh et al. Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8236049 Rowe et al. Aug 2012 B2
8252042 McNamara et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8257390 Carley et al. Sep 2012 B2
8267988 Hamer et al. Sep 2012 B2
8277501 Chalekian et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8298280 Yadin et al. Oct 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308798 Pintor et al. Nov 2012 B2
8317853 Agnew Nov 2012 B2
8317855 Gregorich et al. Nov 2012 B2
8323335 Rowe et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8337541 Quadri et al. Dec 2012 B2
8343174 Goldfarb et al. Jan 2013 B2
8343213 Salahieh et al. Jan 2013 B2
8348999 Kheradvar et al. Jan 2013 B2
8366767 Zhang Feb 2013 B2
8372140 Hoffman et al. Feb 2013 B2
8377119 Drews et al. Feb 2013 B2
8398708 Meiri et al. Mar 2013 B2
8403981 Forster et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8408214 Spenser Apr 2013 B2
8414644 Quadri et al. Apr 2013 B2
8425593 Braido et al. Apr 2013 B2
8430934 Das Apr 2013 B2
8444689 Zhang May 2013 B2
8449599 Chau et al. May 2013 B2
8449625 Campbell et al. May 2013 B2
8454686 Alkhatib Jun 2013 B2
8460365 Haverkost et al. Jun 2013 B2
8474460 Barrett et al. Jul 2013 B2
8500821 Sobrino-Serrano et al. Aug 2013 B2
8512400 Tran et al. Aug 2013 B2
8539662 Stacchino et al. Sep 2013 B2
8540767 Zhang Sep 2013 B2
8545544 Spenser et al. Oct 2013 B2
8551160 Figulla et al. Oct 2013 B2
8551161 Dolan Oct 2013 B2
8562672 Bonhoeffer et al. Oct 2013 B2
8568475 Nguyen et al. Oct 2013 B2
8579964 Lane et al. Nov 2013 B2
8579965 Bonhoeffer et al. Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8585756 Bonhoeffer et al. Nov 2013 B2
8591460 Wilson et al. Nov 2013 B2
8591570 Revuelta et al. Nov 2013 B2
8623075 Murray, III et al. Jan 2014 B2
8623080 Fogarty et al. Jan 2014 B2
8628569 Benichou et al. Jan 2014 B2
8628570 Seguin Jan 2014 B2
8628571 Hacohen et al. Jan 2014 B1
8652203 Quadri et al. Feb 2014 B2
8652204 Quill et al. Feb 2014 B2
8657872 Seguin Feb 2014 B2
8663322 Keranen Mar 2014 B2
8673020 Sobrino-Serrano et al. Mar 2014 B2
8679174 Ottma et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8696742 Pintor et al. Apr 2014 B2
8728155 Montorfano et al. May 2014 B2
8734507 Keranen May 2014 B2
8747460 Tuval et al. Jun 2014 B2
8771345 Tuval et al. Jul 2014 B2
8784472 Eidenschink Jul 2014 B2
8784479 Antonsson et al. Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8795355 Alkhatib Aug 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8801776 House et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8840663 Salahieh et al. Sep 2014 B2
8840664 Karapetian et al. Sep 2014 B2
8845722 Gabbay Sep 2014 B2
8852261 White Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8870950 Hacohen Oct 2014 B2
8876800 Behan Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8900294 Paniagua et al. Dec 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8906083 Obermiller et al. Dec 2014 B2
8911455 Quadri et al. Dec 2014 B2
8911489 Ben-Muvhar Dec 2014 B2
8911493 Rowe et al. Dec 2014 B2
8932343 Alkhatib et al. Jan 2015 B2
8961595 Alkhatib Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986370 Annest Mar 2015 B2
8986373 Chau et al. Mar 2015 B2
8986375 Garde et al. Mar 2015 B2
8992599 Thubrikar et al. Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
8992608 Haug et al. Mar 2015 B2
8998982 Richter et al. Apr 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011527 Li et al. Apr 2015 B2
9017399 Gross et al. Apr 2015 B2
D730520 Braido et al. May 2015 S
D730521 Braido et al. May 2015 S
3034033 McLean et al. May 2015 A1
9023100 Quadri et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
D732666 Nguyen et al. Jun 2015 S
9050188 Schweich, Jr. et al. Jun 2015 B2
9060858 Thornton et al. Jun 2015 B2
9072603 Tuval et al. Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095434 Rowe Aug 2015 B2
9125738 Figulla et al. Sep 2015 B2
9125740 Morriss et al. Sep 2015 B2
9132006 Spenser et al. Sep 2015 B2
9132009 Hacohen et al. Sep 2015 B2
9138312 Tuval et al. Sep 2015 B2
9155619 Liu et al. Oct 2015 B2
9173659 Bodewadt et al. Nov 2015 B2
9173738 Murray, III et al. Nov 2015 B2
9220594 Braido et al. Dec 2015 B2
9226820 Braido et al. Jan 2016 B2
9226839 Kariniemi et al. Jan 2016 B1
9232995 Kovalsky et al. Jan 2016 B2
9241790 Lane et al. Jan 2016 B2
9241791 Braido et al. Jan 2016 B2
9241792 Benichou et al. Jan 2016 B2
9241794 Braido et al. Jan 2016 B2
9248014 Lane et al. Feb 2016 B2
9289290 Alkhatib et al. Mar 2016 B2
9289291 Gorman, III et al. Mar 2016 B2
9295550 Nguyen et al. Mar 2016 B2
9295552 McLean et al. Mar 2016 B2
9301836 Buchbinder et al. Apr 2016 B2
D755384 Pesce et al. May 2016 S
9326852 Spenser May 2016 B2
9326876 Acosta et al. May 2016 B2
9345573 Nyuli et al. May 2016 B2
9387078 Gross et al. Jul 2016 B2
9421098 Gifford, III et al. Aug 2016 B2
9427303 Liddy et al. Aug 2016 B2
9427316 Schweich, Jr. et al. Aug 2016 B2
9439757 Wallace et al. Sep 2016 B2
9463102 Kelly Oct 2016 B2
9474599 Keranen Oct 2016 B2
9474638 Robinson et al. Oct 2016 B2
9480559 Vidlund et al. Nov 2016 B2
9492273 Wallace et al. Nov 2016 B2
9498314 Behan Nov 2016 B2
9532870 Cooper et al. Jan 2017 B2
9554897 Lane et al. Jan 2017 B2
9554899 Granada et al. Jan 2017 B2
9561103 Granada et al. Feb 2017 B2
9566152 Schweich, Jr. et al. Feb 2017 B2
9629716 Seguin Apr 2017 B2
9662203 Sheahan et al. May 2017 B2
9681952 Hacohen et al. Jun 2017 B2
9717591 Chau et al. Aug 2017 B2
9743932 Amplatz et al. Aug 2017 B2
9763657 Hacohen et al. Sep 2017 B2
9763817 Roeder Sep 2017 B2
9770256 Cohen et al. Sep 2017 B2
D800908 Hariton et al. Oct 2017 S
9788941 Hacohen Oct 2017 B2
9987132 Hariton et al. Jun 2018 B1
10010414 Cooper et al. Jul 2018 B2
10076415 Metchik et al. Sep 2018 B1
10105222 Metchik et al. Oct 2018 B1
10111751 Metchik et al. Oct 2018 B1
10123873 Metchik et al. Nov 2018 B1
10130475 Metchik et al. Nov 2018 B1
10136993 Metchik et al. Nov 2018 B1
10143552 Wallace et al. Dec 2018 B2
10149761 Granada et al. Dec 2018 B2
10154906 Granada et al. Dec 2018 B2
10159570 Metchik et al. Dec 2018 B1
10182908 Tubishevitz et al. Jan 2019 B2
10226341 Gross et al. Mar 2019 B2
10231837 Metchik et al. Mar 2019 B1
10238493 Metchik et al. Mar 2019 B1
10245143 Gross et al. Apr 2019 B2
10245144 Metchik et al. Apr 2019 B1
10258471 Lutter et al. Apr 2019 B2
10321995 Christianson et al. Jun 2019 B1
10322020 Lam et al. Jun 2019 B2
10327895 Lozonschi et al. Jun 2019 B2
10376361 Gross et al. Aug 2019 B2
10507108 Delgado et al. Dec 2019 B2
10507109 Metchik et al. Dec 2019 B2
10524792 Hernandez et al. Jan 2020 B2
10531866 Hariton et al. Jan 2020 B2
10531872 Hacohen et al. Jan 2020 B2
10548731 Lashinski et al. Feb 2020 B2
10575948 Iamberger et al. Mar 2020 B2
10595992 Chambers Mar 2020 B2
10595997 Metchik et al. Mar 2020 B2
10646342 Marr et al. May 2020 B1
10813760 Metchik et al. Oct 2020 B2
10820998 Marr et al. Nov 2020 B2
10905554 Cao Feb 2021 B2
20010021872 Bailey et al. Sep 2001 A1
20010056295 Solem Dec 2001 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020032481 Gabbay Mar 2002 A1
20020099436 Thornton et al. Jul 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020177894 Acosta et al. Nov 2002 A1
20030036791 Philipp et al. Feb 2003 A1
20030060875 Wittens Mar 2003 A1
20030069635 Cartledge et al. Apr 2003 A1
20030074052 Besselink Apr 2003 A1
20030083742 Spence et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030158578 Pantages et al. Aug 2003 A1
20040010272 Manetakis et al. Jan 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040039414 Carley et al. Feb 2004 A1
20040093060 Seguin et al. May 2004 A1
20040122503 Campbell et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040133267 Lane Jul 2004 A1
20040143315 Bruun et al. Jul 2004 A1
20040176839 Huynh et al. Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040210244 Vargas et al. Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040236354 Seguin Nov 2004 A1
20040249433 Freitag Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050021056 St. Goar et al. Jan 2005 A1
20050027305 Shiu et al. Feb 2005 A1
20050038494 Eidenschink Feb 2005 A1
20050055086 Stobie Mar 2005 A1
20050075731 Artof et al. Apr 2005 A1
20050080430 Wright et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137695 Salahleh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050149160 McFerran Jul 2005 A1
20050154443 Linder et al. Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050234508 Cummins et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050251251 Cribier Nov 2005 A1
20050267573 Macoviak et al. Dec 2005 A9
20060004439 Spenser et al. Jan 2006 A1
20060004469 Sokel Jan 2006 A1
20060015171 Armstrong Jan 2006 A1
20060020275 Goldfarb et al. Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060020333 Lashinski et al. Jan 2006 A1
20060041189 Vancaillie Feb 2006 A1
20060047297 Case Mar 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060089627 Burnett et al. Apr 2006 A1
20060111773 Rittgers et al. May 2006 A1
20060116750 Hebert et al. Jun 2006 A1
20060135964 Vesely Jun 2006 A1
20060155357 Melsheimer Jul 2006 A1
20060178700 Quinn Aug 2006 A1
20060178740 Stacchino et al. Aug 2006 A1
20060184203 Martin et al. Aug 2006 A1
20060190036 Wendel et al. Aug 2006 A1
20060190038 Carley et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060195184 Lane et al. Aug 2006 A1
20060201519 Frazier et al. Sep 2006 A1
20060212111 Case et al. Sep 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060247680 Amplatz et al. Nov 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060271171 McQuinn et al. Nov 2006 A1
20060282150 Olson et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070016288 Gurskis et al. Jan 2007 A1
20070027528 Agnewl Feb 2007 A1
20070027549 Godin Feb 2007 A1
20070038293 St.Goar et al. Feb 2007 A1
20070038295 Case et al. Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070055340 Pryor Mar 2007 A1
20070056346 Spenser et al. Mar 2007 A1
20070078510 Ryan Apr 2007 A1
20070112422 Dehdashtain May 2007 A1
20070118151 Davidson May 2007 A1
20070162103 Case et al. Jul 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070173932 Cali et al. Jul 2007 A1
20070197858 Goldfarb et al. Aug 2007 A1
20070198077 Cully et al. Aug 2007 A1
20070198097 Zegdi Aug 2007 A1
20070213810 Newhauser et al. Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070219630 Chu Sep 2007 A1
20070225759 Thommen et al. Sep 2007 A1
20070225760 Moszner et al. Sep 2007 A1
20070233186 Meng Oct 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070239272 Navia et al. Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070244546 Francis Oct 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20080004688 Spenser et al. Jan 2008 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080077235 Kirson Mar 2008 A1
20080082083 Forde et al. Apr 2008 A1
20080082159 Tseng et al. Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080086164 Rowe Apr 2008 A1
20080086204 Rankin Apr 2008 A1
20080091261 Long et al. Apr 2008 A1
20080097595 Gabbay Apr 2008 A1
20080132989 Snow et al. Jun 2008 A1
20080140003 Bei et al. Jun 2008 A1
20080147182 Righini et al. Jun 2008 A1
20080161910 Revuelta et al. Jul 2008 A1
20080167705 Agnew Jul 2008 A1
20080167714 St. Goar et al. Jul 2008 A1
20080188929 Schreck Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080200980 Robin et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234814 Salahieh et al. Sep 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255580 Hoffman et al. Oct 2008 A1
20080262609 Gross et al. Oct 2008 A1
20080269879 Sathe et al. Oct 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080294234 Hartley et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090036966 O'Connor et al. Feb 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090099554 Forster et al. Apr 2009 A1
20090099650 Bolduc et al. Apr 2009 A1
20090112159 Slattery et al. Apr 2009 A1
20090125098 Chuter May 2009 A1
20090157175 Benichou Jun 2009 A1
20090171363 Chocron Jul 2009 A1
20090177278 Spence Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090222081 Linder et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090241656 Jacquemin Oct 2009 A1
20090259306 Rowe Oct 2009 A1
20090264859 Mas Oct 2009 A1
20090264994 Saadat Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20090299449 Styrc Dec 2009 A1
20090306768 Quadri Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100023120 Holecek et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100069852 Kelley Mar 2010 A1
20100076548 Konno Mar 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100114299 Ben Muvhar et al. May 2010 A1
20100131054 Tuval et al. May 2010 A1
20100137979 Tuval et al. Jun 2010 A1
20100160958 Clark Jun 2010 A1
20100161036 Pintor et al. Jun 2010 A1
20100161042 Maisano et al. Jun 2010 A1
20100174363 Castro Jul 2010 A1
20100179643 Shalev Jul 2010 A1
20100179648 Richter et al. Jul 2010 A1
20100179649 Richter et al. Jul 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100222810 DeBeer et al. Sep 2010 A1
20100228285 Miles et al. Sep 2010 A1
20100234940 Dolan Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100249917 Zhang Sep 2010 A1
20100256737 Pollock et al. Oct 2010 A1
20100262232 Annest Oct 2010 A1
20100280603 Maisano et al. Nov 2010 A1
20100280606 Naor Nov 2010 A1
20100324595 Linder et al. Dec 2010 A1
20100331971 Keranen et al. Dec 2010 A1
20110004227 Goldfarb et al. Jan 2011 A1
20110004296 Lutter et al. Jan 2011 A1
20110004299 Navia et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110015731 Carpentier et al. Jan 2011 A1
20110021985 Spargias Jan 2011 A1
20110022165 Oba et al. Jan 2011 A1
20110029072 Gabbay Feb 2011 A1
20110040374 Goetz et al. Feb 2011 A1
20110040375 Letac et al. Feb 2011 A1
20110046662 Moszner et al. Feb 2011 A1
20110054466 Rothstein et al. Mar 2011 A1
20110054596 Taylor Mar 2011 A1
20110054598 Johnson Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110071626 Wright et al. Mar 2011 A1
20110077730 Fenster Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087322 Letac et al. Apr 2011 A1
20110093063 Schreck Apr 2011 A1
20110098525 Kermode et al. Apr 2011 A1
20110106247 Miller et al. May 2011 A1
20110112625 Ben-Muvhar et al. May 2011 A1
20110112632 Chau et al. May 2011 A1
20110118830 Liddicoat et al. May 2011 A1
20110125257 Seguin et al. May 2011 A1
20110125258 Centola May 2011 A1
20110137326 Bachman Jun 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137409 Yang et al. Jun 2011 A1
20110137410 Hacohen Jun 2011 A1
20110144742 Madrid et al. Jun 2011 A1
20110166636 Rowe Jul 2011 A1
20110172784 Richter et al. Jul 2011 A1
20110178597 Navia et al. Jul 2011 A9
20110184510 Maisano et al. Jul 2011 A1
20110190877 Lane et al. Aug 2011 A1
20110190879 Bobo et al. Aug 2011 A1
20110202076 Richter Aug 2011 A1
20110208283 Rust Aug 2011 A1
20110208293 Tabor Aug 2011 A1
20110208298 Tuval et al. Aug 2011 A1
20110213459 Garrison et al. Sep 2011 A1
20110213461 Seguin et al. Sep 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110218620 Meiri et al. Sep 2011 A1
20110224785 Hacohen Sep 2011 A1
20110238159 Guyenot et al. Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110245917 Savage et al. Oct 2011 A1
20110251675 Dwork Oct 2011 A1
20110251676 Sweeney et al. Oct 2011 A1
20110251678 Eidenschink et al. Oct 2011 A1
20110251679 Wiemeyer et al. Oct 2011 A1
20110251680 Tran et al. Oct 2011 A1
20110251682 Murray, III et al. Oct 2011 A1
20110251683 Tabor Oct 2011 A1
20110257721 Tabor Oct 2011 A1
20110257729 Spenser et al. Oct 2011 A1
20110257736 Marquez et al. Oct 2011 A1
20110257737 Fogarty et al. Oct 2011 A1
20110264191 Rothstein Oct 2011 A1
20110264196 Savage et al. Oct 2011 A1
20110264198 Murray, III et al. Oct 2011 A1
20110264199 Tran et al. Oct 2011 A1
20110264200 Tran et al. Oct 2011 A1
20110264201 Yeung et al. Oct 2011 A1
20110264202 Murray, III et al. Oct 2011 A1
20110264203 Dwork et al. Oct 2011 A1
20110264206 Tabor Oct 2011 A1
20110264208 Duffy et al. Oct 2011 A1
20110270276 Rothstein et al. Nov 2011 A1
20110271967 Mortier et al. Nov 2011 A1
20110282438 Drews et al. Nov 2011 A1
20110282439 Thill et al. Nov 2011 A1
20110282440 Cao et al. Nov 2011 A1
20110283514 Fogarty et al. Nov 2011 A1
20110288634 Tuval et al. Nov 2011 A1
20110295354 Bueche et al. Dec 2011 A1
20110295363 Girard et al. Dec 2011 A1
20110301688 Dolan Dec 2011 A1
20110301701 Padala et al. Dec 2011 A1
20110301702 Rust et al. Dec 2011 A1
20110307049 Kao Dec 2011 A1
20110313452 Carley et al. Dec 2011 A1
20110313515 Quadri et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20110319991 Hariton et al. Dec 2011 A1
20120010694 Lutter et al. Jan 2012 A1
20120016468 Robin et al. Jan 2012 A1
20120022629 Perera et al. Jan 2012 A1
20120022633 Olson et al. Jan 2012 A1
20120022637 Ben-Muvhar Jan 2012 A1
20120022639 Hacohen et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval Feb 2012 A1
20120041547 Duffy et al. Feb 2012 A1
20120041551 Spenser et al. Feb 2012 A1
20120046738 Lau et al. Feb 2012 A1
20120046742 Tuval et al. Feb 2012 A1
20120053676 Ku et al. Mar 2012 A1
20120053682 Kovalsky et al. Mar 2012 A1
20120053688 Fogarty et al. Mar 2012 A1
20120059454 Millwee et al. Mar 2012 A1
20120059458 Buchbinder et al. Mar 2012 A1
20120065464 Ellis et al. Mar 2012 A1
20120078237 Wang et al. Mar 2012 A1
20120078353 Quadri et al. Mar 2012 A1
20120078357 Conklin Mar 2012 A1
20120083832 Delaloye et al. Apr 2012 A1
20120083839 Letac et al. Apr 2012 A1
20120083879 Eberhardt et al. Apr 2012 A1
20120089223 Nguyen et al. Apr 2012 A1
20120101570 Tuval et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120123511 Brown May 2012 A1
20120123530 Carpentier et al. May 2012 A1
20120130473 Norris et al. May 2012 A1
20120130474 Buckley May 2012 A1
20120130475 Shaw May 2012 A1
20120136434 Carpentier et al. May 2012 A1
20120150218 Sandgren et al. Jun 2012 A1
20120165915 Melsheimer et al. Jun 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120197292 Chin-Chen et al. Aug 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120290062 McNamara et al. Nov 2012 A1
20120296360 Norris et al. Nov 2012 A1
20120296418 Bonyuet et al. Nov 2012 A1
20120300063 Majkrzak et al. Nov 2012 A1
20120310328 Olson et al. Dec 2012 A1
20120323316 Chau et al. Dec 2012 A1
20120330408 Hillukka et al. Dec 2012 A1
20130006347 McHugo Jan 2013 A1
20130018450 Hunt Jan 2013 A1
20130018458 Yohanan et al. Jan 2013 A1
20130035759 Gross et al. Feb 2013 A1
20130041451 Patterson et al. Feb 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130079872 Gallagher Mar 2013 A1
20130116780 Miller et al. May 2013 A1
20130123896 Bloss et al. May 2013 A1
20130123900 Eblacas et al. May 2013 A1
20130150945 Crawford et al. Jun 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130158647 Norris et al. Jun 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130166022 Conklin Jun 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130172992 Gross et al. Jul 2013 A1
20130211501 Buckley et al. Aug 2013 A1
20130245742 Norris Sep 2013 A1
20130261737 Costello Oct 2013 A1
20130261738 Clague et al. Oct 2013 A1
20130274870 Lombardi et al. Oct 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130289711 Liddy et al. Oct 2013 A1
20130297013 Klima et al. Nov 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130325114 McLean et al. Dec 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20140000112 Braido et al. Jan 2014 A1
20140005778 Buchbinder et al. Jan 2014 A1
20140018911 Zhou et al. Jan 2014 A1
20140018915 Biadillah et al. Jan 2014 A1
20140031928 Murphy et al. Jan 2014 A1
20140046430 Shaw Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140067050 Costello et al. Mar 2014 A1
20140067054 Chau et al. Mar 2014 A1
20140081376 Burkart et al. Mar 2014 A1
20140106951 Brandon Apr 2014 A1
20140120287 Jacoby et al. May 2014 A1
20140121749 Roeder May 2014 A1
20140121763 Duffy et al. May 2014 A1
20140135894 Norris et al. May 2014 A1
20140135895 Andress et al. May 2014 A1
20140142681 Norris May 2014 A1
20140142688 Duffy et al. May 2014 A1
20140148891 Johnson May 2014 A1
20140163690 White Jun 2014 A1
20140172069 Roeder et al. Jun 2014 A1
20140172077 Bruchman et al. Jun 2014 A1
20140188210 Beard et al. Jul 2014 A1
20140188221 Chung et al. Jul 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140194983 Kovalsky et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140222163 Xu et al. Aug 2014 A1
20140236287 Clague et al. Aug 2014 A1
20140236289 Alkhatib Aug 2014 A1
20140249622 Carmi et al. Sep 2014 A1
20140257461 Robinson et al. Sep 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140257475 Gross et al. Sep 2014 A1
20140257476 Montorfano et al. Sep 2014 A1
20140277358 Slazas Sep 2014 A1
20140277409 Börtlein et al. Sep 2014 A1
20140277411 Börtlein et al. Sep 2014 A1
20140277418 Miller Sep 2014 A1
20140277422 Ratz et al. Sep 2014 A1
20140277427 Ratz et al. Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140336744 Tani et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140379065 Johnson et al. Dec 2014 A1
20140379074 Spence et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150018944 O'Connell et al. Jan 2015 A1
20150045881 Lim Feb 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150119970 Nakayama et al. Apr 2015 A1
20150127097 Neumann et al. May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150157457 Hacohen Jun 2015 A1
20150157458 Thambar et al. Jun 2015 A1
20150164640 McLean et al. Jun 2015 A1
20150173896 Richter et al. Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150216661 Hacohen et al. Aug 2015 A1
20150238313 Spence et al. Aug 2015 A1
20150245934 Lombardi et al. Sep 2015 A1
20150272730 Melnick et al. Oct 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150282964 Beard et al. Oct 2015 A1
20150320556 Levi et al. Nov 2015 A1
20150327994 Morriss et al. Nov 2015 A1
20150328000 Ratz et al. Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351904 Cooper et al. Dec 2015 A1
20150359629 Ganesan et al. Dec 2015 A1
20160030169 Shahriari Feb 2016 A1
20160030171 Quijano et al. Feb 2016 A1
20160095700 Righini Apr 2016 A1
20160106539 Buchbinder et al. Apr 2016 A1
20160113766 Ganesan et al. Apr 2016 A1
20160113768 Ganesan et al. Apr 2016 A1
20160220367 Barrett Aug 2016 A1
20160228247 Maimon et al. Aug 2016 A1
20160242902 Morriss et al. Aug 2016 A1
20160270911 Ganesan et al. Sep 2016 A1
20160310268 Oba et al. Oct 2016 A1
20160310274 Gross et al. Oct 2016 A1
20160317301 Quadri et al. Nov 2016 A1
20160317305 Pelled et al. Nov 2016 A1
20160324633 Gross et al. Nov 2016 A1
20160324635 Vidlund et al. Nov 2016 A1
20160324640 Gifford, III et al. Nov 2016 A1
20160331526 Schweich, Jr. et al. Nov 2016 A1
20160367360 Cartledge et al. Dec 2016 A1
20160367368 Vidlund et al. Dec 2016 A1
20160374801 Jimenez et al. Dec 2016 A1
20160374802 Levi et al. Dec 2016 A1
20170042678 Ganesan et al. Feb 2017 A1
20170056166 Ratz et al. Mar 2017 A1
20170056171 Cooper et al. Mar 2017 A1
20170062760 Kim Mar 2017 A1
20170128205 Tamir et al. May 2017 A1
20170135816 Lashinski et al. May 2017 A1
20170189174 Braido et al. Jul 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170196692 Kirk et al. Jul 2017 A1
20170209264 Chau et al. Jul 2017 A1
20170216026 Quill et al. Aug 2017 A1
20170231759 Geist et al. Aug 2017 A1
20170231760 Lane et al. Aug 2017 A1
20170239048 Goldfarb et al. Aug 2017 A1
20170249494 Zhang et al. Aug 2017 A1
20170333187 Hariton et al. Nov 2017 A1
20180000580 Wallace et al. Jan 2018 A1
20180021129 Peterson et al. Jan 2018 A1
20180028215 Cohen Feb 2018 A1
20180049873 Manash et al. Feb 2018 A1
20180055628 Patel et al. Mar 2018 A1
20180055630 Patel et al. Mar 2018 A1
20180125644 Conklin May 2018 A1
20180153689 Maimon et al. Jun 2018 A1
20180177594 Patel et al. Jun 2018 A1
20180206983 Noe et al. Jul 2018 A1
20180250126 O'connor et al. Sep 2018 A1
20180296336 Cooper et al. Oct 2018 A1
20180344457 Gross et al. Dec 2018 A1
20180353294 Calomeni et al. Dec 2018 A1
20180360457 Ellis et al. Dec 2018 A1
20190053896 Adamek-bowers et al. Feb 2019 A1
20190060060 Chau et al. Feb 2019 A1
20190060068 Cope et al. Feb 2019 A1
20190060070 Groothuis et al. Feb 2019 A1
20190069997 Ratz et al. Mar 2019 A1
20190105153 Barash et al. Apr 2019 A1
20190117391 Humair Apr 2019 A1
20190167423 Hariton et al. Jun 2019 A1
20190175339 Vidlund Jun 2019 A1
20190183639 Moore Jun 2019 A1
20190216602 Lozonschi Jul 2019 A1
20190350701 Adamek-bowers et al. Nov 2019 A1
20190365530 Hoang et al. Dec 2019 A1
20190388218 Vidlund et al. Dec 2019 A1
20190388220 Vidlund et al. Dec 2019 A1
20200000449 Goldfarb et al. Jan 2020 A1
20200000579 Manash et al. Jan 2020 A1
20200015964 Noe et al. Jan 2020 A1
20200030098 Delgado et al. Jan 2020 A1
20200054335 Hernandez et al. Feb 2020 A1
20200060818 Geist et al. Feb 2020 A1
20200113677 McCann et al. Apr 2020 A1
20200113689 McCann et al. Apr 2020 A1
20200113692 McCann et al. Apr 2020 A1
20200138567 Marr et al. May 2020 A1
20200214832 Metchik et al. Jul 2020 A1
20200237512 McCann et al. Jul 2020 A1
20200246136 Marr et al. Aug 2020 A1
20200253600 Darabian Aug 2020 A1
20200261094 Goldfarb et al. Aug 2020 A1
20200315786 Metchik et al. Oct 2020 A1
20200337842 Metchik et al. Oct 2020 A1
Foreign Referenced Citations (86)
Number Date Country
2822801 Aug 2006 CA
103942537 Jul 2014 CN
103974674 Aug 2014 CN
106486520 Mar 2017 CN
1264582 Dec 2002 EP
1768630 Apr 2007 EP
S53152790 Dec 1978 JP
20010046894 Jun 2001 KR
9843557 Oct 1998 WO
9930647 Jun 1999 WO
0047139 Aug 2000 WO
0162189 Aug 2001 WO
0182832 Nov 2001 WO
0187190 Nov 2001 WO
2003020179 Mar 2003 WO
03028558 Apr 2003 WO
2006007401 Jan 2006 WO
2006054930 May 2006 WO
2006070372 Jul 2006 WO
2006086434 Aug 2006 WO
2006089236 Aug 2006 WO
2006116558 Nov 2006 WO
2007059252 May 2007 WO
2008013915 Jan 2008 WO
2008029296 Mar 2008 WO
2008070797 Jun 2008 WO
2008103722 Aug 2008 WO
2009033469 Mar 2009 WO
2009053497 Apr 2009 WO
2009091509 Jul 2009 WO
2010006627 Jan 2010 WO
2010045297 Apr 2010 WO
2010057262 May 2010 WO
2010073246 Jul 2010 WO
2010081033 Jul 2010 WO
2011025972 Mar 2011 WO
2011069048 Jun 2011 WO
2011106137 Sep 2011 WO
2011111047 Sep 2011 WO
2011137531 Nov 2011 WO
2011143263 Nov 2011 WO
2011154942 Dec 2011 WO
2012011108 Jan 2012 WO
2012024428 Feb 2012 WO
2012036740 Mar 2012 WO
2012048035 Apr 2012 WO
2012127309 Sep 2012 WO
2012177942 Dec 2012 WO
2013021374 Feb 2013 WO
2013021374 Feb 2013 WO
2013021375 Feb 2013 WO
2013021375 Feb 2013 WO
2013021384 Feb 2013 WO
2013059747 Apr 2013 WO
2013072496 May 2013 WO
2013078497 Jun 2013 WO
2013128436 Sep 2013 WO
2013175468 Nov 2013 WO
2014022124 Feb 2014 WO
2014076696 May 2014 WO
2014115149 Jul 2014 WO
2014145338 Sep 2014 WO
2014164364 Oct 2014 WO
2015173794 Nov 2015 WO
2016016899 Feb 2016 WO
2016093877 Jun 2016 WO
2016125160 Aug 2016 WO
2017223486 Dec 2017 WO
2018025260 Feb 2018 WO
2018025263 Feb 2018 WO
2018029680 Feb 2018 WO
2018039631 Mar 2018 WO
2018106837 Jun 2018 WO
2018112429 Jun 2018 WO
2018118717 Jun 2018 WO
2018131042 Jul 2018 WO
2018131043 Jul 2018 WO
2019026059 Feb 2019 WO
2019030753 Feb 2019 WO
2019077595 Apr 2019 WO
2019116369 Jun 2019 WO
2019138400 Jul 2019 WO
2019195860 Oct 2019 WO
2019202579 Oct 2019 WO
2020058972 Mar 2020 WO
2020167677 Aug 2020 WO
Non-Patent Literature Citations (186)
Entry
An Advisory Action dated Apr. 2, 2018, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Jun. 18, 2018, which issued during the prosecution of UK Patent Application No. 1800399.6.
An Office Action dated Jun. 6, 2018, which issued during the prosecution of UK Patent Application No. 1720803.4.
An International Search Report and a Written Opinion both dated May 13, 2019, which issued during the prosecution of Applicant's PCT/IL2018/051350.
An International Search Report and a Written Opinion both dated Apr. 5, 2019, which issued during the prosecution of Applicant's PCT/IL2019/050142.
An International Search Report and a Written Opinion both dated Jan. 25, 2019, which issued during the prosecution of Applicant's PCT/IL2018/051122.
An International Search Report and a Written Opinion both dated Dec. 5, 2018, which issued during the prosecution of Applicant's PCT/IL2018/050725.
An International Preliminary Report on Patentability dated Feb. 12, 2019, which issued during the prosecution of Applicant's PCT/IL2017/050873.
An International Preliminary Report on Patentability dated Feb. 5, 2019, which issued during the prosecution of Applicant's PCT/IL2017/050849.
An Office Action dated Mar. 25, 2019, which issued during the prosecution of European Patent Application No. 14710060.6.
An Office Action dated Oct. 25, 2018, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Mar. 4, 2019, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Jan. 9, 2019, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Office Action dated Jan. 30, 2019, which issued during the prosecution of U.S. Appl. No. 15/872,501.
An Office Action dated Feb. 5, 2019, which issued during the prosecution of U.S. Appl. No. 15/899,858.
An Office Action dated May 23, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,659.
An Office Action dated May 1, 2019, which issued during the prosecution of U.S. Appl. No. 15/691,032.
An International Search Report and a Written Opinion both dated Nov. 9, 2018, which issued during the prosecution of Applicant's PCT/IL2018/050869.
U.S. Appl. No. 61/312,412, filed Mar. 10, 2010.
U.S. Appl. No. 13/044,694, filed Mar. 10, 2011, published as 2011/0224785.
U.S. Appl. No. 14/626,267, filed Feb. 19, 2015, published as 2015/0157457 issued as U.S. Pat. No. 9,788,941.
U.S. Appl. No. 15/729,107, filed Oct. 10, 2017, published as 2018/0028311.
Alexander S. Gena, et al; “Replacement of Degenerated Mitral and Aortic Bioprostheses Without Explantation”, Ann. Thorac Surg., Jun. 2001; vol. 72, pp. 1509-1514.
Dominique Himbert, MD; “Mital Regurgitation and Stenosis from Bioprosthesis and Annuloplasty Failure: Transcatheter Approaches and Outcomes”, TCT 2015.
Josef Jansen, et al; “Detachable Shape-Memory Sewing Ring for Heart Valves”, Artif. Organs, vol. 16, No. 3, pp. 294-297, 1992.
Frank Langer, et al; “RING plus STRING: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation”, The Journal of Thoracic and Cardiovascular Surgery, vol. 133, No. 1, pp. 247-249; Jan. 2007.
Frank Langer, et al; “RING+STRING Successful Repair Technique for Ischemic Mitral Regurgitation With Severe Leaflet Tethering”, Circulation, Sep. 2009; 120[Suppl 1]; pp. S85-S91.
Francesco Maisano; “Valtech Cardiovalve: Novel Design Feature and Clinical Update”, TCT 2015.
Giovanni Righini; “Saturn Project a novel solution for transcatheter heart valve replacement specifically designed to address clinical therapeutic needs on mitral valve”.
John G. Webb, et al; “Transcatheter Valve-in-Valve Implantation for Failed Bioprosthetic Heart Valves”, Circulation, published online Apr. 12, 2010, vol. 121; pp. 1848-1857.
Righini presentation EuroPCR May 2015 (Saturn)—(downloaded from; https://www.pcronline.com/Cases-resourcesimages/Resources/Course-videos-slides/2015/Cardiovascularinnovation-pipeline-Mitral-and-triscuspid-valve-interventions.).
USPTO FOA dated Sep. 12, 2013 in connection with U.S. Appl. No. 13/412,814.
USPTO NOA dated Aug. 18, 2017 in connection with U.S. Appl. No. 14/689,608.
USPTO NOA dated May 10, 2016 in connection with U.S. Appl. No. 14/237,258.
USPTO RR dated Jan. 20, 2016 in connection with U.S. Appl. No. 14/161,921.
USPTO RR dated Aug. 14, 2012 in connection with U.S. Appl. No. 12/961,721.
Extended European Search Report dated Feb. 10, 2017; Appln. 12821522.5.
Extended European Search Report dated Feb. 18, 2015; Appln. 12821522.5.
Extended European Search Report dated Jun. 29, 2017; Appln. 11809374.9.
EPO Communication dated Feb. 10, 2017; Appln. 18821522.5.
Invitation to pay additional fees dated Jan. 2, 2018; PCT/IL2017/050849.
Invitation to pay additional fees dated Sep. 29, 2017; PCT/IL2017/050873.
Invitation to pay additional fees dated Jun. 12, 2014; PCT/IL2014/050087.
IPRP issued Feb. 11, 2014; PCT/IL2012/000292.
IPRP issued Feb. 11, 2014; PCT/IL2012/000293.
IPRP issued Sep. 11, 2012; PCT/IL2011/000231.
IPRP issued Dec. 2, 2013; PCT/IL2011/000582.
International Search Report dated Oct. 13, 2011; PCT/IL11/00231.
International Search Report and Written Opinion dated Feb. 6, 2013; PCT/IL2012/000292.
International Search Report and Written Opinion dated Feb. 6, 2013; PCT/IL2012/00293.
International Search Report and Written Opinion dated Mar. 17, 2014; PCT/IL13/50937.
International Search Report and Written Opinion dated May 30, 2016; PCT/IL2016/050125.
International Search Report and Written Opinion dated Jun. 20, 2018; PCT/IL2018/050024.
International Search Report and Written Opinion dated Sep. 4, 2014; PCT/IL2014/050087.
International Search Report and Written Opinion dated Oct. 27, 2015; PCT/IL2015/050792.
Internationai Search Report and Written Opinion dated Dec. 5, 2011; PCT/IL11/00582.
Office Action issued by the UK dated Feb. 7, 2017; Appln. GB1613219.3.
U.S. Appl. No. 61/283,819.
U.S. Appl. No. 61/492,449.
U.S. Appl. No. 61/515,372.
U.S. Appl. No. 61/525,281.
U.S. Appl. No. 61/537,276.
U.S. Appl. No. 61/555,160.
U.S. Appl. No. 61/588,892.
U.S. Appl. No. 61/312,412.
USPTO FOA dated Jan. 17, 2018 in connection with U.S. Appl. No. 14/763,004.
USPTO FOA dated Feb. 10, 2014 in connection with U.S. Appl. No. 13/033,852.
USPTO FOA dated Feb. 15, 2013 in connection with U.S. Appl. No. 12/840,463.
USPTO FOA dated Feb. 25, 2016 in connection with U.S. Appl. No. 14/522,987.
USPTO FOA dated Mar. 25, 2015 in connection with U.S. Appl. No. 12/840,463.
USPTO FOA dated Apr. 13, 2016 in connection with U.S. Appl. No. 14/626,267.
USPTO FOA dated May 23, 2014 in connection with U.S. Appl. No. 13/412,814.
USPTO FOA dated Jul. 18, 2013 in connection with U.S. Appl. No. 13/044,694.
USPTO FOA dated Jul. 23, 2013 in connection with U.S. Appl. No. 12/61,721.
USPTO Applicant-Initiated Interview Summary dated Feb. 8, 2018 in connection with U.S. Appl. No. 15/213,791.
USPTO NFOA dated Jan. 5, 2018 in connection with U.S. Appl. No. 15/541,783.
USPTO NFOA dated Jan. 18, 2017 in connection with U.S. Appl. No. 14/626,267.
USPTO NFOA dated Jan. 20, 2016 in connection with U.S. Appl. No. 14/161,921.
USPTO NFOA dated Jan. 21, 2016 in connection with U.S. Appl. No. 14/237,264.
USPTO NFOA dated Feb. 2, 2018 in connection with U.S. Appl. No. 15/329,920.
USPTO NFOA dated Feb. 6, 2013 in connection with U.S. Appl. No. 13/412,814.
USPTO NFOA dated May 15, 2013 in connection with U.S. Appl. No. 12/583,979.
USPTO NFOA dated May 29, 2012 in connection with U.S. Appl. No. 12/840,463.
USPTO NFOA dated Jun. 4, 2014 in connection with U.S. Appl. No. 12/840,463.
USPTO NFOA dated Jun. 17, 2014 in connection with U.S. Appl. No. 12/961,721.
USPTO NFOA dated Jun. 28, 2018 in connection with U.S. Appl. No. 29,635,658.
USPTO NFOA dated Jun. 28, 2018 in connection with U.S. Appl. No. 29/635,661.
USPTO NFOA dated Jun. 30, 2015 in connection with U.S. Appl. No. 14/522,987.
USPTO NFOA dated Jul. 1, 2016 in connection with U.S. Appl. No. 14/161,921.
USPTO NFOA dated Jul. 2, 2014 in connection with U.S. Appl. No. 13/811,308.
USPTO NFOA dated Jul. 3, 2014 in connection with U.S. Appl. No. 13/033,852.
USPTO NFOA dated Jul. 26, 2018 in connection with U.S. Appl. No. 15/872,501.
USPTO NFOA dated Aug. 2, 2013 in connection with U.S. Appl. No. 13/033,852.
USPTO NFOA dated Aug. 6, 2018 in connection with U.S. Appl. No. 15/729,107.
USPTO NFOA dated Aug. 9, 2018 in connection with U.S. Appl. No. 15/899,858.
USPTO NFOA dated Aug. 9, 2018 in connection with U.S. Appl. No. 15/902,403.
USPTO NFOA dated Aug. 14, 2012 in connection with U.S. Appl. No. 12/961,721.
USPTO NFOA dated Sep. 12, 2013 in connection with U.S. Appl. No. 13/412,814.
USPTO NFOA dated Sep. 19, 2014 in connection with U.S. Appl. No. 13/044,694.
USPTO NFOA dated Oct. 23, 2017 in connection with U.S. Appl. No. 14/763,004.
USPTO NFOA dated Nov. 8, 2013 in connection with U.S. Appl. No. 12/840,463.
USPTO NFOA dated Nov. 23, 2012 in connection with U.S. Appl. No. 13/033,852.
USPTO NFOA dated Nov. 27, 2015 in connection with U.S. Appl. No. 14/626,267.
USPTO NFOA dated Nov. 28, 2012 in connection with U.S. Appl. No. 12/961,721.
USPTO NFOA dated Dec. 7, 2017 in connection with U.S. Appl. No. 15/213,791.
USPTO NFOA dated Dec. 10, 2015 in connection with U.S. Appl. No. 14/237,258.
USPTO NFOA dated Dec. 31, 2012 in connection with U.S. Appl. No. 13/044,694.
USPTO NOA dated Feb. 11, 2015 in connection with U.S. Appl. No. 13/033,852.
USPTO NOA dated Mar. 10, 2015 in connection with U.S. Appl. No. 13/811,308.
USPTO NOA dated Apr. 8, 2016 in connection with U.S. Appl. No. 14/237,258.
USPTO NOA dated Apr. 20, 2018 in connection with U.S. Appl. No. 15/878,206.
USPTO NOA dated May 5, 2015 in connection with U.S. Appl. No. 12/840,463.
USPTO NOA dated May 22, 2017 in connection with U.S. Appl. No. 14/689,608.
USPTO NOA dated Jun. 20, 2017 in connection with U.S. Appl. No. 14/626,267.
USPTO NOA dated Aug. 15, 2014 in connection with U.S. Appl. No. 13/412,814.
USPTO Notice of Abandonment dated Jul. 9, 2015 in connection with U.S. Appl. No. 13/044,694.
USPTO RR dated Feb. 3, 2014 in connection with U.S. Appl. No. 13/811,308.
USPTO RR dated Apr. 21, 2017 in connection with U.S. Appl. No. 15/213,791.
USPTO RR dated May 4, 2018 in connection with U.S. Appl. No. 15/872,501.
USPTO RR dated Jun. 17, 2014 in connection with U.S. Appl. No. 12/961,721.
USPTO RR dated Jul. 2, 2012 in connection with U.S. Appl. No. 13/033,852.
USPTO RR dated Aug. 13, 2012 in connection with U.S. Appl. No. 13/044,694.
USPTO RR dated Aug. 28, 2015 in connection with U.S. Appl. No. 14/237,264.
USPTO RR dated Sep. 26, 2016 in connection with U.S. Appl. No. 14/763,004.
USPTO RR dated Nov. 6, 2015 in connection with U.S. Appl. No. 14/626,267.
USPTO RR dated Nov. 28, 2012 in connection with U.S. Appl. No. 12/961,721.
USPTO Supplemental NOA dated May 10, 2016 in connection with U.S. Appl. No. 14/237,258.
USPTO Supplemental NOA dated May 20, 2016 in connection with U.S. Appl. No. 14/237,258.
USPTO Supplemental NOA dated Jul. 6, 2017 in connection with U.S. Appl. No. 14/689,608.
USPTO NFOA dated Feb. 7, 2017 in connection with U.S. Appl. No. 14/689,608.
USPTO NFOA dated Feb. 7, 2018 in connection with U.S. Appl. No. 15/197,069.
USPTO NFOA dated Apr. 20, 2018 in connection with U.S. Appl. No. 15/886,517.
An Office Action dated Jan. 6, 2020, which issued during the prosecution of U.S. Appl. No. 16/660,231.
An Office Action dated Dec. 31, 2019, which issued during the prosecution of U.S. Appl. No. 16/183,140.
An Office Action dated Jan. 14, 2020, which issued during the prosecution of U.S. Appl. No. 16/284,331.
Notice of Allowance dated Jan. 13, 2020, which issued during the prosecution of U.S. Appl. No. 15/956,956.
European Search Report dated Mar. 5, 2020 which issued during the prosecution of Applicant's European App No. 17752184.6.
European Search Report dated Mar. 4, 2020 which issued during the prosecution of Applicant's European App No. 16706913.7.
Notice of Allowance dated Mar. 12, 2020, which issued during the prosecution of U.S. Appl. No. 16/460,313.
An Office Action dated Jan. 9, 2020, which issued during the prosecution of U.S. Appl. No. 15/600,190.
An Office Action dated Jan. 3, 2020, which issued during the prosecution of U.S. Appl. No. 16/678,355.
An Office Action dated Feb. 6, 2020, which issued during the prosecution of U.S. Appl. No. 15/668,659.
An Office Action dated Jun. 25, 2019, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Office Action dated May 16, 2019, which issued during the prosecution of U.S. Appl. No. 15/433,547.
An Office Action dated Aug. 1, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,559.
An Office Action dated Aug. 16, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,659.
An Office Action dated Jun. 19, 2019, which issued during the prosecution of U.S. Appl. No. 15/682,789.
An Office Action dated Jun. 14, 2019, which issued during the prosecution of U.S. Appl. No. 15/703,385.
An Office Action dated Oct. 4, 2019, which issued during the prosecution of U.S. Appl. No. 16/183,140.
An Office Action dated Jun. 13, 2019, which issued during the prosecution of U.S. Appl. No. 16/388,038.
An Office Action dated Sep. 13, 2019, which issued during the prosecution of U.S. Appl. No. 16/460,313.
An Office Action dated Nov. 26, 2019, which issued during the prosecution of U.S. Appl. No. 16/532,945.
An Office Action dated Nov. 1, 2019, which issued during the prosecution of U.S. Appl. No. 15/872,501.
Notice of Allowance dated May 7, 2020, which issued during the prosecution of U.S. Appl. No. 16/637,166.
Sündermann, Simon H., et al. “Feasibility of the Engager™ aortic transcatheter valve system using a flexible over-the-wire design.” European Journal of Cardio-Thoracic Surgery 42.4 (2012): e48-e52.
An Office Action summarized English translation and Search Report dated Jul. 3, 2020, which issued during the prosecution of Chinese Patent Application No. 201780061210.3.
Serruys, P. W., Piazza, N., Cribier, A., Webb, J., Laborde, J. C., & de Jaegere, P. (Eds.). (2009). Transcatheter aortic valve implantation: tips and tricks to avoid failure. CRC Press.—Screenshots from Google Books downloaded from: https://books.google.co.il/books?id=FLzLBQAAQBAJ&lpg=PA198&ots=soqWrDH-y_&dg=%20%22Edwards%20SAPIEN%22&lr&pg=PA20#v=onepage&q=%22Edwards%20SAPIEN%22&f=false ; Downloaded on Jun. 18, 2020.
An International Search Report and a Written Opinion both dated Jun. 24, 2020, which issued during the prosecution of Applicant's PCT/IL2019/051398.
An Office Action dated Jul. 14, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Aug. 28, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Jul. 29, 2020, which issued during the prosecution of U.S. Appl. No. 16/132,937.
An Office Action dated Jul. 29, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
Notice of Allowance dated Aug. 26, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
An Office Action dated Aug. 7, 2020, which issued during the prosecution of U.S. Appl. No. 15/668,659.
Tchetche, D. and Nicolas M. Van Mieghem: “New-generation TAVI devices: description and specifications” EuroIntervention, 2014, No. 10:U90-U100.
Symetis S.A.: “ACURATE neo™ Aortic Bioprosthesis for Implantation using the Acurate neo™ TA Transapical Delivery System in Patients with Severe Aortic Stenosis,” Clinical Investigation Plan, Protocol No. 2015-01, Vs. No. 2, 2015:1-76.
Notice of Allowance dated Sep. 10, 2020, which issued during the prosecution of U.S. Appl. No. 15/600,190.
An Office Action dated Feb. 2, 2021, which issued during the prosecution of U.S. Appl. No. 16/811,732.
An Office Action dated Dec. 24, 2020, which issued during the prosecution of U.S. Appl. No. 16/144,054.
An Office Action dated Jan. 13, 2021 which issued during the prosecution of European Patent Application No. 15751089.2.
Maisano, F., et al. “The edge-to-edge technique: a simplified method to correct mitral insufficiency.” European journal of cardio-thoracic surgery 13.3 (1998): 240-246.
Fucci, C., et al. “Improved results with mitral valve repair using new surgical techniques.” European journal of cardio-thoracic surgery 9.11 (1995): 621-627.
U.S. Appl. No. 60/128,690, filed Apr. 9, 1999.
Batista, Randas JV, et al. “Partial left ventriculectomy to treat end-stage heart disease.” The Annals of thoracic surgery 64.3 (1997): 634-638.
Beall Jr, Arthur C., et al. “Clinical experience with a dacron velour-covered teflon-disc mitral-valve prosthesis.” The Annals of thoracic surgery 5.5 (1968): 402-410.
Mitral Valve Academic Research Consortium. “Clinical Trial Design Principles and Endpoint Definitions for Transcatheter Mitral Valve Repair and Replacement: Part 1: Clinical Trial Design Principles A Consensus Document from the Mitral Valve Academic Research Consortium.” Journal of the American College of Cardiology 66.3 (2015): 278-307.
U.S. Appl. No. 60/613,867, filed Sep. 27, 2004.
Kalbacher, D., et al. “1000 MitraClip™ procedures: Lessons learnt from the largest single-centre experience worldwide.” (2019): 3137-3139.
Declaration of Dr. Ivan Vesely, Ph.D. In Support of Petition for Inter Partes Review of U.S. Pat. No. 10,226,341—dated Dec. 17, 2020.
Declaration of Ivan Vesely, Ph.D., in Support of Petition for Inter Partesreview of U.S. Pat. No. 7,563,267—dated May 29, 2019.
An Office Action together with an English summary dated Mar. 3, 2021, which issued during the prosecution of Chinese Patent Application No. 201780047391.4.
An International Preliminary Report on Patentability dated Oct. 20, 2020, which issued during the prosecution of Applicant's PCT/IL2019/050142.
An Office Action dated Oct. 5, 2020, which issued during the prosecution of Canadian Patent Application No. 2,973,940.
Notice of Allowance dated Nov. 19, 2020, which issued during the prosecution of U.S. Appl. No. 16/318,025.
An Office Action dated Sep. 24, 2020, which issued during the prosecution of U.S. Appl. No. 16/811,732.
An Office Action summarized English translation and Search Report dated Nov. 25, 2020, which issued during the prosecution of Chinese Patent Application No. 201910449820.1.
Related Publications (1)
Number Date Country
20190015202 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
61312412 Mar 2010 US
Divisions (1)
Number Date Country
Parent 13044694 Mar 2011 US
Child 14626267 US
Continuations (2)
Number Date Country
Parent 15729107 Oct 2017 US
Child 16138129 US
Parent 14626267 Feb 2015 US
Child 15729107 US