This invention relates to gas turbine technology and, more specifically, to an axially-staged gas turbine combustor nozzle configuration that promotes enhanced CO burn-off.
Currently, there is a limit to an otherwise desirable reduction in the exit temperature of combustion gases due to the amount of CO contained in the combustion gases. In other words, combustor exit temperature must be kept relatively high in order to ensure CO burn-off to meet required emission levels for CO. In order to keep the combustor exit temperature high enough to maintain low CO levels under at low- or no-load conditions, the customer must either shut the turbine down or keep the turbine “on-line”, even during periods of low power requirements, thus increasing the amount of fuel consumed.
There is a need, therefore, for a mechanism by which the amount of CO generated by combustion in the gas turbine can be reduced so that the customers' turndown capability can be enhanced. More specifically if CO levels could be reduced with the combustor at low- or no-load conditions, customers would use less fuel during times of reduced electrical demand. This, in turn, would result in direct fuel savings, but without having to shut down the turbine and then restart when demand returns, thus producing reliability enhancements as well.
In a first exemplary but nonlimiting embodiment, the invention relates to a combustor for a gas turbine comprising a plurality of radially outer nozzles arranged in a substantially annular array, each of the radially outer nozzles having an outlet end located to supply fuel and/or air to a first combustion chamber; at least a center nozzle having an outlet end located axially upstream of the outlet ends of the radially outer nozzles, configured and arranged to supply fuel and air to a second combustion chamber axially upstream of the first combustion chamber, the second combustion chamber opening into the first combustion chamber and having a length sufficient to maintain a center nozzle flame confined to the second combustion chamber.
In another exemplary aspect, the invention relates to a combustor for a gas turbine comprising a plurality of nozzles arranged in a substantially annular array, each of the nozzles having an outlet end located to supply fuel and/or air to a first combustion chamber; a center nozzle and at least one of the plurality of nozzles having outlet ends located axially upstream of the outlet ends of remaining ones of the plurality of nozzles, configured and arranged to supply fuel and air to a second combustion chamber axially upstream of the first combustion chamber, the second primary combustion chamber opening into the first combustion chamber and having a length sufficient to maintain a center nozzle flame and a flame of the at least one of the plurality of nozzles confined to the second combustion chamber.
In still another exemplary aspect, the invention provides a method of operating a gas turbine having at least one combustor supplied with fuel and/or air through a plurality of nozzles including an outer array of nozzles surrounding a center nozzle, the method comprising (a) at no- or low-load conditions, supplying fuel and air to the center nozzle and air only to the outer array of nozzles while isolating a flame generated by the center nozzle from air flowing through the outer array of nozzles; and (b) at higher load conditions, supplying a fuel/air mixture through both the outer array of nozzles and the center nozzle such that flames generated by the outer array of nozzles are maintained in a first combustion chamber and a flame generated by the center nozzle is maintained in a second combustion chamber upstream of the first combustion chamber.
The invention will now be described in more detail in connection with the drawings identified below.
With reference now to
More specifically, and with continuing reference especially to
Fuel is supplied to the radially outer nozzle tubes (two shown at 46 (
At low-load regimes down to full-speed no-load (FSNL), fuel is supplied only to the center nozzle 28, while air flows through the radially outer nozzles 26. By confining the center nozzle flame to the primary combustion chamber 36, it is protected from the cold air supplied through the radially outer nozzles 26 and thus not subject to an undesirable temperature drop. As a result, by maintaining the center nozzle flame at a high temperature, and with sufficient fuel volume to the center nozzle 28, the center nozzle flame will burn off the resident CO. The reduction in CO levels will, in turn, allow the turbine operator to turn the gas turbine down even further in load reduced fuel consumption, when power requirements are low, with attendant.
As loading is increased, there comes a point when the amount of fuel required for combustion is greater than can be accommodated by the center nozzle 28. The radially outer nozzles 26 are then brought on board, with fuel supplied to the radially outer nozzles mixing with combustion air supplied by the compressor as described above. The combustion flames associated with the outer nozzles 26 are anchored downstream of the primary combustion chamber 36, within the main combustion chamber 32. The radially outer nozzles 26 may be “lit” or ignited simultaneously, or in some predetermined sequence (or simultaneously in groups of 2 or three, for example) as dictated by combustion optimization for specific combustor applications.
In any event, at FSFL, the center nozzle flame remains anchored in the primary combustion chamber 36 while the outer nozzle flames remain anchored in the main combustion chamber 32, downstream of the primary combustion chamber 36. Because the tubular member 42 defining the primary combustion chamber 36 is exposed directly to the center nozzle flame, it must be cooled by any suitable means such as, for example, application of a thermal barrier coating, impingement cooling, the addition of turbulators, or any combination of the above.
In an optimized application of the invention to a particular turbine model, one third (⅓) of the combustion air will flow through the center nozzle, and two thirds (⅔) through the array of outer nozzles, with a phi ratio of approximately 0.6 (phi is an equivalence ratio defined as the ratio of the actual fuel/air ratio to the stoichiometric value). Typical phi values range from 0.50 to 0.65.
In an alternative operational mode at FSFL, the flame in the center nozzle 28 may be extinguished for a relatively short time, and then resupplied with fuel such that the flame re-ignites (and is maintained) downstream of the primary combustion chamber 36. By reigniting the center nozzle flame in the main combustion chamber 40 and keeping it out of the primary combustion chamber 36, the temperature of the tubular member 42 will be cooler, and the mixing zone for the fuel and air supplied to the center nozzle 28 is extended, resulting in better mixing and in lower NOx emissions. In this alternative FSFL operational mode, it may be advantageous to have the wall of the tubular member 42 taper inwardly in the downstream direction. The higher velocity of the fuel/air mixture moving through the reduced cross section would prevent the center nozzle flame from moving upstream, back into the primary combustion chamber. Note that in the event it is decided to reignite the flame within the primary combustion chamber 36, it is necessary to provide a spark plug or other igniter in the chamber.
In still another exemplary but nonlimiting embodiment, more than one nozzle can be protected from the cold air flowing through the surrounding or adjacent nozzles at FSNL. For example, a center nozzle and one or two other nozzles in the outer array could be recessed in the same manner as described above in connection with the center nozzle 28. In addition, the one or two additional nozzles could be located in a single oblong, oval or other shape combustion chamber, i.e., the chamber shape would be dictated by the number and location of the recessed nozzles. One such arrangement is shown in
This developed multi-stage combustor is thus capable of isolating fueled nozzles (for example, the center nozzle 28) reacting flames from excessively cold surrounding air exiting adjacent unfueled nozzles (for example, the radially outer nozzles 26 at part-or no-load regimes by establishing a combustion zone in a recessed combustion chamber (the primary combustion chamber 36) for complete CO burnout at the end of that chamber.
Number | Date | Country | Kind |
---|---|---|---|
2010105138 | Feb 2010 | RU | national |