Axle for vehicles, in particular commercial vehicles

Abstract
For an axle for vehicles, in particular commercial vehicles, with a rigid axle body, axle guidance and/or axle support is provided, making it possible to adapt to different transverse distances in the axle guidance or axle support which are predetermined on the body side.
Description


[0001] The invention relates to an axle for vehicles, in particular commercial vehicles, according to the pre-characterizing clause of claim 1.


[0002] Axles of the abovementioned type are known, for example, from DE 297 13 996 U1 and comprise, as functional elements associated with axle guidance and/or axle support, carrying arms which are fastened pivotably at one end to the vehicle body and, at the end located opposite in the longitudinal direction of the vehicle, form the support for a pneumatic spring. These functional elements are assigned, on the axle body, counterelements which comprise mounting parts in the form of flanged plates which are provided, on their mutually confronting surfaces directed towards the axle body, with guides form-fitting relative to the axle body and on one of which the carrying arm is seated, likewise secured in a form-fitting manner, on the side facing away from the axle body, the carrying arm and the flanged plates being braced via spring clips which are configured as yokes which are parallel to a vertical plane containing the axle center line and which engage over the carrying arm and, passing through the flanged plates laterally relative to the axle body, are braced at their lower end remote from the carrying arm via nuts, so that a fastening plane is predetermined. For the form-fitting assignment of the mounting parts to the carrying arm serving as a carrying and/or guiding body, there are functional parts which are at a predetermined distance from the fastening plane and thus also define a predetermined position of the respective carrying arm, as a functional element, with respect to the fastening plane.


[0003] The object on which the invention is based is to develop an axle of the type mentioned in the introduction, particularly to the effect that, without any action being taken on its structure, it is possible to adapt to different vehicle conditions in terms of the distance of the functional elements associated with axle guidance and/or axle support from the axle transverse mid-plane or the vehicle longitudinal mid-plane.


[0004] According to the invention, this is achieved by means of the features of claim 1, as a result of which the axle-side counterelements to the functional elements associated with axle support can be adapted to different distances of the functional elements from the vehicle longitudinal mid-plane, in that the mounting part assigned in each case to a counterelement can be positioned with its functional part in different positions in relation to the axle body and to the fastening plane, without action otherwise being taken on the axle construction.


[0005] For this purpose, it proves expedient, in particular, to give the mounting parts, in particular in the form of flanged plates, an independent fastening with respect to the axle body, to be precise as a releasable fastening particularly in the form of a screw connection which, in its assignment to the axle body, makes it possible in structural terms to fix a fastening plane, in relation to which, in the case of an offset of the associated functional part in relation to the fastening plane, the respective mounting part can be connected to the axle body in such a way that, for the functional part, different distances from the axle transverse mid-plane in the various assembly positions are obtained, the said distances making it possible to adapt to different distances of the functional elements from the vehicle longitudinal mid-plane or from the axle transverse mid-plane, or vice versa.


[0006] If, for example, a rigid spring carrier, a leaf spring or the like is provided as a functional element associated with axle support, then, with this functional element tied up to the flanged plate as the axle-side counterelement, spring tracks having a different distance from the vehicle longitudinal mid-plane can thereby be formed, so that correspondingly changed body conditions can be taken into account on the axle side.


[0007] If a fixed stop provided on the frame side, for example in the form of a rubber buffer, is provided as a functional element associated with axle support, then this fixed stop, when assigned to a side member of the vehicle frame and to different frame configurations, may necessitate a corresponding adaptation on the axle side, and this can take place by means of the transverse displacement of the functional part, in that the flanged plate, as a mounting part, is provided with, as a functional part, a stop surface which, by virtue of its positioning with respect to the axle body, makes it possible to have different distances from the axle transverse mid-plane.


[0008] Depending on which functional element of axle guidance and/or axle support requires an offset in the vehicle transverse direction with respect to its axle-side counterelement in terms of the respective design conditions, the attached flanged plate, as an integral part of the counterelement, can have its functional part aligned with this functional element, the attached flanged plate being capable of being assigned to the top side or else the underside of the axle, this being achieved in the position necessary in each case with respect to its screw-connection plane.


[0009] Within the scope of the invention, it proves expedient to connect, for example to weld, a flanged plate to the axle body in a form-fitting and/or materially integral manner and to screw the attached flanged plate carrying the functional part with respect to this flanged plate which is fixed relative to the axle body, preferably the screwing plane, as a fastening plane, forming a plane perpendicular to the axle center line. Instead of a screw connection with the fastening plane defined by the screwing axes, the fastening plane may also be predetermined in another way in structural terms, a position which proves expedient being one in which the screw connections are symmetrical to the fastening plane. Screw connection takes place expediently via screw bolts in relation to the flanged counterplate fixed relative to the axle body, the screw bolts being screwed into the flanged counterplate. This advantageously affords the possibility of designing the flanged counterplate as a carrier of a leaf spring, of a leaf-spring assembly or of an axle carrier, for example for pneumatic spring elements, these parts associated with axle guidance or axle support being screwed with respect to the flanged counterplate preferably via screw connections which are symmetrical to the screwing plane of the screw connection between the two flanged plates.


[0010] In particular, the solution according to the invention proves expedient in conjunction with an arrangement in which the attached flanged plate forms the counterelement for a body-side fixed stop as a functional element, and in which the flanged counterplate, assigned to the axle underside, is a carrier for a leaf spring, a leaf spring assembly or an axle carrier, the relevant screw connection taking place, starting from below, preferably via screw bolts which are assigned blind-hole receptacles in the flange counterplate, so that no water can penetrate from above and the blind holes also cannot form a build-up space for water, which will be conducive to rusting-in.






[0011] Further details and features of the invention may be gathered from the claims. Furthermore, the invention is explained below with reference to an exemplary embodiment. In the drawing:


[0012]
FIG. 1 shows a diagrammatic illustration of an axle for a commercial vehicle, with a suggestion of functional elements serving for axle guidance and of those serving for axle support, as regards the latter their axle-side counterelement being formed by a flanged plate,


[0013]
FIG. 2 shows a top view of the illustration according to FIG. 1,


[0014]
FIG. 3 shows a view corresponding to that of FIG. 1, the axle-side flanged plates associated with axle support and provided as counterelements being shown in the position offset at 180° relative to the illustration according to FIG. 1,


[0015]
FIG. 4 shows a top view of the illustration according to FIG. 3, and


[0016]
FIG. 5 shows a diagrammatic sectional illustration along a partially offset sectional line V-V in FIG. 2, functional elements associated with the flanged plates for axle support which are assigned as axle-side counterelements to the axle body being shown, opposite one another, in the form of stop buffers.






[0017] The drawings show an axle for commercial vehicles in a highly diagrammatic illustration, and reduced to the elements essential for understanding the invention, 1 designating the rigid axle body which is designed essentially symmetrically to the longitudinal mid-plane designated, in relation to the vehicle, by 2. The longitudinal center line of the axle body 1 is designated by 3.


[0018] The axle comprises functional elements associated with axle guidance and/or axle support, in the exemplary embodiment a functional element serving for axle guidance being indicated at 4 and a functional element serving for axle support being indicated at 5. The axle-guidance element 4 is, for example, a side member 6 which is held, in a way not shown, on the vehicle body at a distance from the axle body 1 via pneumatic springs; instead of the side member 6, for example, a leaf spring may also form the axle-guidance element 4, and this leaf spring may also additionally assume a supporting function.


[0019] The axle-support element 5 is illustrated by a stop buffer 8 provided on the frame member 7. The functional elements 4 and 5 forming axle guidance and axle support and being in the form of the side member 6 and the stop buffer 8 respectively have corresponding to them, on the axle side, counterelements which are designated as a whole by 20 and, in the exemplary embodiment, comprise flanged plates 9 and 10. In this case, the connection of the side member 6 or of a longitudinal leaf spring provided at this point to the axle body 1 is illustrated via the flanged plate 10, whilst the flanged plate 9 in the stop buffer 8 of the axle-support element 5 is located opposite.


[0020] The solution according to the invention with regard to the position and assignment relative to the axle body is explained in more detail below in terms of the flanged plate 9, and, contrary to the exemplary embodiment shown, the same also applies accordingly, within the scope of the invention, to the flanged plate 10, so that, if appropriate, the flanged plates 9 and/or 10 would have to be arranged, transposed, in a way according to the invention.


[0021] In view of the foregoing, there is no restriction if, in the exemplary embodiment, the flanged plate 10 associated with the underside of the axle body 1 and forming the guide for the side member 6 is connected to the axle body 1 in a form-fitting and/or materially integral manner, for example by welding, and only the opposite flanged plate 9 assigned to the top side of the axle body in the exemplary embodiment is attached onto the axle body 1 and is displaceable relative to the latter in a way according to the invention.


[0022] The flanged plate 9 assigned to the functional element 5 is connected via a screw connection to the flanged plate 10 permanently assigned to the axle body 1 in the exemplary embodiment for the sake of simplicity. The screw connection is designated by 12, and, in the exemplary embodiment, it is made via two screw bolts 13 which, starting from the side facing away from the axle body 1, pass through the flanged plate 9 and are screwed into corresponding receiving bores in the flanged plate 10.


[0023] In this respect, reference is made to FIG. 5 which, in a highly diagrammatic illustration, shows the frame member 7 and the elastic stop buffer 8 provided on the latter and forming a functional element. The stop buffer 8 is assigned, opposite it, as a functional part, a stop 11 which is provided on the flanged plate 9 which, as an integral part of the counterelement, forms a mounting part.


[0024] The screw connection 12, which, in the exemplary embodiment, defines the fastening plane 21, is illustrated by means of the screw bolts 13, of which two are provided, lying in, as a fastening plane 21, a plane parallel to the longitudinal mid-plane 2 of the vehicle or to the transverse mid-plane of the axle. The screw bolts 13 span the axle body 1 on opposite sides and engage in receiving bores 14 of the flanged plate 10.


[0025] In the exemplary embodiment illustrated, the flanged plate 10 is connected to the axle body 1 in a form-fitting or materially integral manner, for example by welding, and itself forms the fastening for a side member 6, the side member being screwed from below against the flanged plate 10, and this fastening screw connection, designated as a whole by 15, being formed by four screw bolts 16 which, passing through the side member 6, are screwed into downwardly open blind-hole bores 17 of the flanged plate 10. The four screw bolts 16 of the screw connection of the side member 6 are assigned to the corner points of the flanged plate 10 and lie opposite one another in pairs laterally in relation to the axial body 1, preferably the screw bolts 13 of the screw connection 12 which define the fastening planes 21 engaging into the flanged plate 10 in each case approximately centrally between two screw bolts 16.


[0026] In relation to the fastening plane 21, as a result of a first embodiment according to the invention, the flanged plate 9 may be arranged so as to be offset at 180°, presupposing a corresponding shape of the axle body, as a comparison of FIGS. 1, 2 and 3, 4 shows. This 180°-offset arrangement of the flanged plate 9 on the axle body 1, in conjunction with the flanged plate 9 being designed asymmetrically to the fastening plane 21, with, as a functional part located opposite the stop buffer 8, a stop 11 offset to one side in relation to the fastening plane 21, makes it possible that, with the fastening plane 21 being in the same position in relation to the axle body, the stop 11 can be positioned in two positions offset along the longitudinal center line 3 of the axle body and consequently at a different distance from the axle transverse mid-plane. As a result, with the construction of the axle otherwise being unchanged, a coordination with fixed stops, such as the stop buffer 8, lying at a different distance from one another in the transverse direction of the vehicle may take place, that is to say, with these stop buffers 8 being assigned to frame side members 7, an adaptation to different frame structures can be carried out.


[0027] As already indicated, contrary to the exemplary embodiment shown, the same is also possible accordingly with regard to the flanged plate 10, so that, in application of the teaching according to the invention, diverse adaptation possibilities are afforded.


[0028] A further possibility according to the invention is to position the flanged plate 9, whilst maintaining its alignment with the axle body 1, that is to say with respect to the position of its stop 11 forming the functional part in relation to the fastening plane 21 in the direction of the axle longitudinal mid-plane, on different sides with respect to the axle transverse mid-plane 2, in such a way that, starting from a position of the stop 11 between the fastening plane and the axle transverse mid-plane on one axle side, for example, the left-hand axle side in relation to FIGS. 1 and 2, a position of the stop 11 on that side of the fastening plane 21 which is remote from the axle transverse mid-plane 2 is obtained on the other axle side, as illustrated on the right-hand side in FIGS. 3 and 4. By virtue of such a crosswise interchange and/or by virtue of the transposition due to an arrangement offset at 180°, with the respective axle side being maintained, this results, in conjunction with correspondingly transposable flanged plates, in diverse possibilities for position adaptation, in each case presupposing corresponding cross-sectional and/or dimensional conditions of the axle body 1 and/or of the flanged plate 9.


[0029] Particularly in conjunction with axle bodies produced in the sheet-metal form of construction, it proves expedient to connect one flanged plate to the axle body in a materially integral manner, for example by welding. It is also within the scope of the invention, however, for one of the flanged plates, to carry out, with respect to the axle body, a longitudinally and/or rotationally secure form-fitting fixing in relation to the longitudinal center line 3.


[0030] In particular, FIGS. 2 and 4 show that, advantageously, the mounting for a transverse stabilizer, which mounting is designated here by 18, can be connected to the flanged plate 10 secured to the axle body 1 in a form-fitting or materially integral manner.

Claims
  • 1. Axle for vehicles, in particular commercial vehicles, with functional elements associated with axle guidance and/or axle support and with counterelements which are assigned to these and lie on both sides of the axle transverse mid-plane and which, with a fastening plane predetermined in structural terms at a distance from the axle transverse mid-plane, comprise mounting parts which are connected in each case releasably to the axle body and which have in each case a functional part assigned positionally to a functional element and offset to the fastening plane of the mounting part, characterized in that, by the mounting parts (flanged plates 9) being arranged with an offset of the functional parts (stops 11) with respect to the fastening plane (21), the functional parts (stops 11) can be positioned on the axle body (1) in the direction of the axle transverse mid-plane (2) or in the opposite direction, at a different distance from the axle transverse mid-plane (2).
  • 2. Axle according to claim 1, characterized in that the mounting parts are designed as flanged plates (9) capable of being braced against the axle body (1).
  • 3. Axle according to claim 2, characterized in that the flanged plates (9) are braced against the axle body (1) by means of screw connections (12) which define the fastening plane (21).
  • 4. Axle according to claim 3, characterized in that the respective fastening plane is defined by the screwing axes.
  • 5. Axle according to one of the preceding claims, characterized in that the mounting parts (flanged plates 9) can be fastened in positions in relation to the axle body (1) which are offset at 180° to one another in relation to the fastening plane (21).
  • 6. Axle according to one of claims 1 to 4, characterized in that the mounting parts (9) located opposite one another in relation to the axle transverse mid-plane (2) can, with their alignment with the axle body (1) being maintained, be transposed between the mutually opposite axle sides of the axle body, in such a way that, starting from a position of the functional part (stop 11) between the fastening plate (21) and the axle transverse mid-plane (2) on one axle side, a position of the functional part (stop 11) on that side of the fastening plane (21) which is remote from the axle transverse mid-plane (2) is obtained on the other axle side.
  • 7. Axle according to one of the preceding claims, characterized in that the functional part of the flanged plate (9) is a stop (11) limiting the spring excursion of the axle body (1) relative to the body.
  • 8. Axle according to one of claims 1 to 6, characterized in that the functional part of the flanged plate is designed as a clamping part for an axle-support and/or axle-guidance body.
  • 9. Axle according to claim 8, characterized in that the axle-support and/or axle-guidance body provided is a leaf spring.
  • 10. Axle according to claim 8, characterized in that the axle-support and/or axle-guidance body provided is a spring carrier.
  • 11. Axle according to one of the preceding claims, characterized in that the flanged plate (9) forming a functional part has provided opposite it, as a clamping partner to the axial body (1), a flanged plate (10) which is connected unreleasably to the axle body (1).
  • 12. Axle according to one of claims 1 to 10, characterized in that the flanged plate (9) forming a functional part has provided opposite it, as a clamping partner to the axial body (1), a flanged plate (10) which is connected releasably to the axle body (1).
  • 13. Axle according to one of the preceding claims, characterized in that the fastening plane (21) defined by the screw connection (12) between the flanged plates (9, 10) forms the plane of symmetry for screwing the axle guide and/or axle support to the axle body (1).
  • 14. Axle according to claim 13, characterized in that the reciprocal screw connections start from opposite sides of the axle body (1).
  • 15. Axle according to claim 14, characterized in that the screwing elements provided for the screw connections are screw bolts.
  • 16. Axle according to claim 9 or 10, characterized in that the screw bolts of the axle-guidance screw connection lying on the underside in relation to the axle body are screwed into blind holes of the associated flanged plate.
Priority Claims (1)
Number Date Country Kind
10043802.4 Sep 2000 DE
PCT Information
Filing Document Filing Date Country Kind
PCT/EP01/09869 8/28/2001 WO