Azido-caprolactam as inhibitor for selecting microorganisms with high lysine productivity

Information

  • Patent Grant
  • 5770412
  • Patent Number
    5,770,412
  • Date Filed
    Tuesday, March 12, 1996
    28 years ago
  • Date Issued
    Tuesday, June 23, 1998
    26 years ago
Abstract
A process for producing microorganisms which have increased L-lysine productivity is described. The process makes use of microorganisms of the genera Corynebacterium and Brevibacterium which are resistant to feedback inhibition by 2-azido-.epsilon.-caprolactam.
Description

The present invention relates to a process for producing L-lysine and microorganisms therefor.
L-lysine is an essential amino acid and is widely used as additive to human and animal food. It is also employed in medicine as component of infusion solutions.
L-lysine is obtained by hydrolysis of proteins with acid, by synthesis of D,L-lysine and subsequent resolution of the racemate and by synthesis with the aid of microorganisms. Microbiological processes for preparing L-lysine are described, for example, in Trends in Biotechnology 1 (1983) 70-74.
We have found an improved process for producing microorganisms which produce L-lysine.
The present invention relates to a process for producing microorganisms which have increased L-lysine productivity by mutation of microorganisms of the genera Corynebacterium and Brevibacterium with known mutagens in a conventional manner, which comprises mutating strains of the abovementioned genera and selecting those resistant to feedback inhibition by 2-azido-.epsilon.-caprolactam.
Surprisingly, 2-azido-.epsilon.-caprolactam has considerably higher efficiency in the selection of mutants after mutagenesis than the compounds described in JP 51-19 186 and EP 175 309, such as fluoro- or chlorocaprolactam.
It is thus possible by selection with azidocaprolactam to increase the lysine productivity of strains by more than 10%.
The mutants according to the invention can be produced by conventional mutagenesis, eg. with N-methyl-N'-nitro-N-nitrosoguanidine or by U.V. radiation.
Examples of suitable microorganisms of the genera Corynebacterium (C) and Brevibacterium (B) are the following: B. ammoniagenis, B. divaricatum, B. flavum, B. ketoglutamicum, B. lactofermentum, B. linens, B. sp., C. acetoacidophilum, C. acetoglutamicum, C. glutamicum, C. lilium and C. sp. Preference is given to B. flavum and C. glutamicum, especially B. flavum ATCC 21.474 and C. glutamicum; ATCC 21526. The latter has the special advantage that it is homoserine-dependent and, moreover, is resistant to S-(2-aminoethyl)-L-cysteine.
As already indicated, it is beneficial for the strains to be homoserine-dependent. It is also useful for the strains to be resistant to S-(2-aminoethyl)-L-cysteine. If the strains do not possess this resistance it can be introduced as described in U.S. Pat. No. 3,707,441 by treating the strains with N-methyl-N'-nitro-N-nitrosoguanidine and subsequent selection.





EXAMPLE
Corynebacterium glutamicum ATCC 21 526 was treated with 250 .mu.g/ml N-methyl-N'-nitro-N-nitrosoguanidine in tris/maleic acid buffer, pH 6.0, at 30.degree. C. for 30 min. The cells were then washed with 0.1M tris buffer, pH 7.2, plated on minimal agar plates and then incubated at 28.degree. C. for from 4 to 14 days.
The minimal agar had the following composition:
______________________________________20 g/l agar 0.1 g/l MnSO.sub.4.H.sub.2 O2 g/l (NH.sub.4).sub.2 SO.sub.4 100 .mu.g/l biotin0.5 g/l KH.sub.2 PO.sub.4 30 mg/l each Met, Thr, Leu0.5 g/l K.sub.2 HPO.sub.4 4 g/l lactate0.4 g/l MgSO.sub.4.7H.sub.2 O 40 moles/l 2-azido-.epsilon.-caprolactam0.01 g/l FeSO.sub.4.7H.sub.2 O pH = 7.0______________________________________
The colonies producing lysine amongst those growing on the agar plates after incubation were identified. The strains which produced 10% more lysine than the initial strain were isolated.
Claims
  • 1. A process for stably increasing L-lysine in L-lysine-producing bacteria by mutation and selection steps which process comprises
  • a) mutating bacteria selected from the group consisting of Brevibacterium ammoniagenes, Brevibacterium divaricatum, Brevibacterium flavum, Brevibacterium ketoglutamicum, Brevibacterium linens, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium glutamicum, and Corynebacterium lilium with one or more mutagens, and
  • b) selecting strains that produce increased yields of L-lysine by culturing strains that survive said mutation step in a minimal medium having a concentration of 40 mM 2-azido-.epsilon.-caprolactam to select for mutants resistant to said compound, wherein said resistant strains produce increased yields of L-lysine.
  • 2. The process of claim 1, wherein the bacteria to be mutated are selected from the group consisting of Brevibacterium flavum and Corynebacterium glutamicum.
  • 3. The process of claim 2, wherein the bacteria to be mutated are selected from the group consisting of B. flavum ATCC 21,474 and Corynebacterium glutamicum ATCC 21,526.
Priority Claims (1)
Number Date Country Kind
40 23 576.9 Jul 1990 DEX
Parent Case Info

This application is a continuation of application Ser. No. 08/280,586, filed Jun. 25, 1994, which is a c-i-p of Ser. No. 08/181,973, filed Jan. 18, 1994, which is a continuation of Ser. No. 07/927,680, which was filed Sep. 3, 1992 all now abandoned.

US Referenced Citations (4)
Number Name Date Kind
3687810 Kurihara et al. Aug 1972
3708395 Nakayama et al. Jan 1973
4066501 Tosaka et al. Jan 1978
4411997 Shimazaki et al. Oct 1983
Foreign Referenced Citations (2)
Number Date Country
175309 Sep 1985 EPX
51-19186 Feb 1976 JPX
Non-Patent Literature Citations (3)
Entry
ATCC Catalogue o Bacteria, 1989, pp. 46 and 66.
Trends in Biotechnology, vol. 1, 1983, Tosaka, "The Production of L-Lysine by Fermentation", pp. 70-74.
Chemical Abstract, vol. 85, 1976, p. 469, Nr. 92,192.
Continuations (2)
Number Date Country
Parent 280586 Jul 1994
Parent 927680 Sep 1992
Continuation in Parts (1)
Number Date Country
Parent 181973 Jan 1994