This invention generally relates to baby bottles.
Infants require a specific amount of nutrients each day. These nutrients are often provided through a mother's milk. However, there are times when the mother is not available to provide milk or is unable or unwilling to provide milk to her newborn. In order to provide the baby the nutrients that are required, babies are often fed a mixture called “formula”. Formula is a powdered substance often mixed with water to create a liquid solution that the baby can intake into his or her body to receive the nutrients.
Feeding a child liquid formula created from a powdered mixture using prior art mixing devices and baby bottles can be complicated, costly, and/or messy. For example, prior art formula may be premixed. In this instance, the formula mixture is created before the baby is hungry, so it is ready as soon as the baby needs it. However, pre-making a formula mixture is not always an available method of providing an infant his or her required nutrients as it is typically recommended that premixed formula be consumed within one hour of creation as it may spoil if it is not consumed within that timeframe.
Extending the consumption period for a pre-mixed batch of formula may be accomplished through cooling the pre-mixed formula—potentially with a cold pack or ice. However, the formula mixture must usually be heated prior to giving the mixture to the baby. Cooling and heating takes extra time and/or equipment, so it is not always conducive to undertake these steps—when traveling, for example. Therefore, premixed formula often spoils prior to consumption, wasting the formula and in the process increasing costs.
Prior art devices which are adapted to keep the powdered formula separate from the mixing liquid until the time the two are to be mixed are deficient in many respects. For example, current devices do not operate appropriately—they become clogged during the mixing process, for example, or they may be difficult to clean. Furthermore, many systems are comprised of internal liners, which are difficult to use and may introduce foreign material into the formula once the liner is torn. Many of these prior art devices are further deficient because they require the use of two or more devices to keep the powder separate from the liquid. Furthermore, the device may require a complicated movement to mix the powder with the liquid, which is difficult to perform. Other devices may not allow for the device to be reusable or may not allow for the purchase of bulk formula powder.
a an isometric view of a first compartment having a first version of a stabilization coupling mechanism first portion according to one embodiment of the invention.
b is a side view of a distal end of a second compartment having a second version of a stabilization coupling mechanism first portion according to one embodiment of the invention.
a is an isometric view of a second compartment according to one embodiment of the invention having a first version of a stabilization coupling mechanism second portion.
b is an isometric view of a second compartment according to one embodiment of the invention having a second version of a stabilization coupling mechanism second portion.
In order to alleviate the problems associated with prior art infant formula mixing devices, a new baby bottle design has been developed. Embodiments of this baby bottle provide a user with a baby bottle design that is easy to clean, operate, maintain, and is cost effective. One embodiment allows a predetermined amount of liquid and powder be kept in a single device, allowing for easy mixture of the two upon a user performing a simple operation. Therefore, premixing formula is no longer required since formula can be made on a moment's notice. As keeping premixed formula from spoiling by cooling and heating the mixture is no longer required, one embodiment of a new baby bottle design allows for longer formula shelf-life than premixed formula.
A version of a baby bottle may be comprised of a polymeric material. The material may be easy to clean and dishwasher-safe. One embodiment's baby bottle material may be lighter than prior art bottles. Having a lighter bottle may make it easier for a person to carry one or more baby bottles.
One embodiment of a baby bottle may be comprised of two compartments. A first compartment may be adapted to couple to a second compartment. The first compartment may also be adapted to couple to a lid, wherein, the lid may have a polymeric nipple attachment. One portion of the second compartment may be comprised of an end cap. The end cap may detachably couple to an end of the second compartment and may be adapted to enable easier cleaning of the second compartment, among having other attributes.
The first compartment may be further comprised of a first section of a stabilization coupling mechanism and may have a partially closed distal end. The second compartment may have a partially closed first end and may have a second section of a stabilization mechanism. The distal end may be adapted to couple to the first end. The two ends may create one of a substantially open position and a substantially closed position. In the substantially open position, there is an opening between the two compartments, essentially creating one large compartment. In the substantially closed position, there may be a seal between the two compartments, keeping the two compartments substantially separate. The stabilization mechanism sections are adapted to secure the two compartments in the substantially open or the substantially closed position.
In one method, an amount of formula adapted to provide an infant with required nutrients may be measured. The formula amount may be a specified amount provided from a physician or according to formula directions. The measured formula amount may be placed onto an uncoupled end cap or, after coupling the end cap to the second compartment, into the second compartment. In another embodiment, the measured formula amount may be placed into the second compartment, which is coupled to the first compartment in a locked closed position. The end cap may then be coupled to the second compartment to substantially close the second end. When the end cap is placed on an open second end of the second compartment, the end cap should substantially close the second end.
Upon placing the formula in the second compartment, the second compartment may then be coupled to the first compartment. The two compartments may then be moved to the substantially closed position which may be the locked closed position. This may be done by aligning an open portion of the distal end with a closed portion of the first end. Water may then be poured into the second compartment through an open second compartment proximal end. The lid may then be coupled to the second compartment's proximal end. The first compartment distal end and the second compartment first end may then be moved to the substantially open position when mixing is desired. This may be accomplished by aligning an open distal end portion with an open first end portion.
Moving one embodiment of a baby bottle from the substantially closed position having two separate compartments to a substantially open position having a single compartment may include rotating and generally locking the device in a first position and a second position. For example, in one method, the stabilization coupling mechanism may lock the bottle in a closed first position. One type of stabilization coupling mechanism may be comprised of a flange or a flange pair and a surface extension. In one method using one embodiment, a user may insert an end of one of the first and second compartments into an end of the other of the first and second compartments. The two compartments may then be rotated in opposing directions until the extension is received by the flange or flange pair. This may place the bottle in a closed position. When the formula is ready to be made, the two compartments may then be rotated in opposing direction about 180 degrees, placing the bottle in the open position. Another embodiment may rotate in opposing directions about 90 degrees.
The liquid in the first compartment may then be mixed with the formula in the second compartment. To completely and thoroughly mix the formula and liquid, the bottle may be agitated. For example, the bottle may be shaken repeatedly. Upon mixing the formula, the formula may be allowed to settle and fed to the infant.
Having a substantially closed and a substantially open position, and moving the bottle from the closed position to the open position removes many of the deficiencies with the prior art devices. By creating a seal between the two compartments when in the closed position, the compartments do not leak. Furthermore, by having a large enough opening between the two compartments when in the open position, the device does not become clogged during the mixing process. These two features solve the major problem with prior art devices—having a two compartment device which does not leak, but yet still has a large enough opening between the two that the formula can be easily mixed when so desired.
Terminology:
The terms and phrases as indicated in quotation marks (“ ”) in this section are intended to have the meaning ascribed to them in this Terminology section applied to them throughout this document, including in the claims, unless clearly indicated otherwise in context. Further, as applicable, the stated definitions are to apply, regardless of the word or phrase's case, tense or any singular or plural variations of the defined word or phrase.
The term “or” as used in this specification and the appended claims is not meant to be exclusive rather the term is inclusive meaning “either or both”.
References in the specification to “one embodiment”, “an embodiment”, “a preferred embodiment”, “an alternative embodiment”, “a variation”, “one variation”, and similar phrases mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an embodiment of the invention. The appearances of phrases like “in one embodiment”, “in an embodiment”, or “in a variation” in various places in the specification are not necessarily all meant to refer to the same embodiment or variation.
The term “couple”, “coupled”, “coupling”, or any variation thereof, as used in this specification and the appended claims refers to either an indirect or direct connection between the identified elements, components or objects. Often the manner of the coupling will be related specifically to the manner in which the two coupled elements interact. Specifically, this term may be used to define two elements joined by a bolted fastener, a latch, a hook, or any other reasonably readily removable fastening device.
The term “integrate” or “integrated” as used in this specification and the appended claims refers to a blending, uniting, or incorporation of the identified elements, components or objects into a unified whole.
Directional and/or relationary terms such as, but not limited to, left, right, nadir, apex, top, bottom, vertical, horizontal, back, front and lateral are relative to each other and are dependent on the specific orientation of a applicable element or article, and are used accordingly to aid in the description of the various embodiments and are not necessarily intended to be construed as limiting.
As applicable, the terms “about” or “generally” as used herein unless otherwise indicated means a margin of +−20%. Also, as applicable, the term “substantially” as used herein unless otherwise indicated means a margin of +−10%. It is to be appreciated that not all uses of the above terms are quantifiable such that the referenced ranges can be applied.
One Embodiment of a Baby Bottle:
As best shown in Figures One through Four and Figure Seven, one version of a baby bottle 10 may be comprised of a first compartment 12 and a second compartment 14. A baby bottle embodiment may also be comprised of an end cap 16, a top section 18, and a lid 19 (the lid is best shown in
One embodiment's top section 18 is comprised of an attachment section 2 and fluid dispersion section 4. One top section's attachment section may be generally cylindrical and hollow, having a sidewall 6 and a top 8 as best shown in
The top 8 of the attachment section 2 may extend from a sidewall edge 9 to the fluid dispersion section 4. The fluid dispersion section may be adapted to substantially prevent liquid from exiting the bottle and yet allow fluid to exit the bottle upon performing a specific action. For example, in one embodiment, the fluid dispersion section may be a polymeric nipple generally centered on the top and adapted to release fluid upon an infant or baby placing his or her mouth on the nipple and drawing the liquid into the baby's mouth through a sucking action. Other fluid dispersion sections are also contemplated, such as, but not limited to, using a “sippy cup” type of device. The fluid dispersion section may also be referred to, or may also have, an inlet or outlet port.
As best shown in
As best shown in
In one embodiment, the proximal end 20 is integrated to the distal end 29 through a middle section 24. The middle section may be referred to as an enclosure and may be comprised of a generally cylindrically-shaped compartment, and may also have a generally tapered shape. For example, one middle section may expand from a start diameter 25′ wherein the start diameter is about equal to the proximal end diameter to a maximum diameter 25″, then taper to an end diameter 25′″, the end diameter as best shown in
The material used in one first compartment 12 and second compartment 14 may be FDA approved material recognized as safe for food and contact application. Furthermore, the material may comply with European standards as well. For example, compartments may be comprised of the latest European Standard for Drinking Equipment for Children EN14350: 2004 and may be determined by a specific daily intake of BPA for children. For example, one bottle may be comprised of a polycarbonate material wherein different portions or sections of the bottle may be comprised of different colors. Portions of the compartments such as, but not limited to the coupling mechanism first portion 27 may be comprised of material similar to material used in many of the products produced by OXO International of New York, N.Y. For example, this may be an elastomeric material in one embodiment and may be a thermoplastic elastomer.
One first compartment stabilization coupling mechanism first portion 27 comprises at least one flange, as best shown in
One embodiment of a baby bottle 10 may be comprised of a second version of a stabilization coupling mechanism. As best shown in
As best shown in
As best shown in
One first compartment 12 may have a length of about 4.5 inches with a start diameter 25′ of about 2 inches. Other embodiments may have a larger sized first compartment, with a length of about 6 inches and a diameter of about 3 inches. One second compartment 14 may have a similar diameter to the first compartment and may have a length of about 1.5 inches in one embodiment and a 2.5 inch length in another embodiment.
One Method of Preparing Infant Formula:
As best shown in
In one method, the formula is placed into the second compartment 14. However, the formula may be placed onto the end cap 16 in one method. Also, the end cap may be coupled to the second compartment in one method prior to placing the formula into the compartment. One method may include rotatably coupling the end cap to the second compartment. The second compartment may then be coupled to the first compartment. In one method, the first compartment may snap to the second compartment, but other coupling mechanisms such as, but not limited to, latches and threads may be used as well. The coupling in one method creates a seal between the first a second compartment to substantially prevent liquid from escaping from the two compartments. In one snapping method this is accomplished through having a distal end diameter 26, as best shown in
Upon coupling the first compartment 12 to the second compartment 14, the distal end open portion 50, as best shown in
In one method, the distal end open portion 50 and the second compartment closed portion 49 are aligned through rotating the first compartment 12 in a first direction and rotating the second compartment 14 in a second direction. One first direction may be a clockwise direction and one second direction may be a counterclockwise direction. The seal between the distal end 29 and the cavity 36 may not be broken in one method during rotation. Rotation may end when the stabilization coupling mechanism first portion 27 couples to a stabilization coupling mechanism second portion 38. This coupling may generally prevent the two compartments from rotating relative to each other. Alternatively, in one method, at least one extension 38, as best shown in
When the two compartments are substantially sealed from each other, liquid may be poured into the first compartment. In one method, water may be poured through a first compartment substantially open bore 22 into the compartment. The amount of liquid may be a specific amount selected for the type of liquid as well as the amount of formula measured and placed into the second compartment.
The top section 18 may then be coupled to the first compartment 12. In one embodiment, the top section is comprised of threads which mate with threads 21 on the first compartment. For example, the first compartment threads may be external proximal end 20 threads adapted to mate with top section internal threads. Coupling the top section to the proximal end may substantially close the proximal end bore 22 in order to prevent liquid from escaping the first compartment. Other methods may include different ways to substantially close the proximal and distal ends 29.
When both the first compartment 12 and the second compartment 14 are substantially closed and sealed, the first compartment distal end port open portion 50 may be aligned with the second compartment first end cavity open portion 50. Doing so may mix the liquid contained within the first compartment and the formula powder contained within the second compartment. In order to thoroughly dissolve the powder into the liquid, the baby bottle may be thoroughly agitated. For example, upon aligning the two open portions, the bottle may be shaken vigorously.
The embodiments of the baby bottle and methods of use as illustrated in the accompanying figures and described above are merely exemplary and are not meant to limit the scope of the invention. It is to be appreciated that numerous variations to the invention have been contemplated as would be obvious to one of ordinary skill in the art with the benefit of this disclosure.
A method may also include using multiple second compartments. In such a method, formula may be placed in an additionally second compartment having an end cap coupled to the second end. An end cap or a lid may be coupled to the distal end of the additional second compartment. Upon feeding the baby with formula contained within a first second compartment, the bottle may be rinsed and washed, the lid or end cap removed from the distal end, and the additional second compartment may be coupled to the first compartment.
Wherein the second compartment may have a second end cap adapted to couple to the first end. By coupling a second end cap to a second compartment, formula may be stored in a detached from the second compartment. If the formula in the original second compartment is used, the original second compartment may be removed and the new second compartment may be coupled to the first compartment.
Number | Name | Date | Kind |
---|---|---|---|
4703863 | Kohus | Nov 1987 | A |
4778068 | Kohus | Oct 1988 | A |
4779722 | Hall | Oct 1988 | A |
4818114 | Ghavi | Apr 1989 | A |
4823946 | Stoeffler et al. | Apr 1989 | A |
5361918 | Mason | Nov 1994 | A |
5419445 | Kaesemeyer | May 1995 | A |
5433328 | Baron et al. | Jul 1995 | A |
5638968 | Baron et al. | Jun 1997 | A |
5678709 | Holley et al. | Oct 1997 | A |
5794802 | Caola | Aug 1998 | A |
5863126 | Guild | Jan 1999 | A |
6027392 | Ruhlman | Feb 2000 | A |
6045254 | Inbar et al. | Apr 2000 | A |
6116439 | Yaniv | Sep 2000 | A |
7150369 | Fryar | Dec 2006 | B1 |
7850027 | Hayes et al. | Dec 2010 | B2 |
20040188371 | Holley, Jr. | Sep 2004 | A1 |
20050263475 | Carlson et al. | Dec 2005 | A1 |
20060273059 | Mendenhall et al. | Dec 2006 | A1 |
20070017890 | Al-Jadh | Jan 2007 | A1 |
20070221601 | Eitrheim et al. | Sep 2007 | A1 |
20070284329 | Hayes et al. | Dec 2007 | A1 |
20090178940 | Said | Jul 2009 | A1 |
20090301905 | Bullard et al. | Dec 2009 | A1 |
20100072160 | Hayes | Mar 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090184080 A1 | Jul 2009 | US |