1. Field of the Invention
The present invention relates to a baby carriage folding mechanism for a baby carriage foldable in three and, more particularly, to a baby carriage folding mechanism mounted on the handle of a folding baby carriage.
2. Description of the Related Art
Various folding baby carriages for carrying a baby when taking the baby outdoors for walking or shopping have been proposed. When necessary, the folding baby carriages are folded for easy storage and carrying.
When folding the folding baby carriage in a compact package, the user holding the opposite ends of a handle or armrests needs to fold the baby carriage or the user holding a middle part of the handle needs to tilt the baby carriage so that one side of the baby carriage is folded onto the other side of the same by gravity, after folding a seat flat.
Accordingly, the user needs to change the position of the hands on the handle when folding the baby carriage by hand, and the user needs to use both hands for folding the baby carriage. Therefore, it is difficult for the user holding a baby in the user's arms to fold the baby carriage. When applying gravity to fold the baby carriage, the baby carriage needs an increased number of joints and the like to reduce resistance against the movement of parts when folding the baby carriage. Those joints reduce the rigidity of the body of the baby carriage and make it difficult to transmit the sensation of operations and locking of parts to the user.
According to a first embodiment of the present invention, a baby carriage folding mechanism for a baby carriage foldable in three includes a casing and right and left pipes connected to opposite ends of the casing by hinged joints, respectively. The pipes compose a handle for the baby carriage, wherein each of the hinged joints has an inner member on the side of the casing and an outer member capable of turning relative to the inner member on the side of the pipe. Actuating means for turning the outer members relative to the corresponding inner members are disposed between the casing and the outer members. The baby carriage can be folded or developed by turning the outer members relative to the corresponding inner members.
In the baby carriage folding mechanism according to the first embodiment of the present invention, the casing is provided on an inner surface thereof with guide grooves inclined to the longitudinal axis of the casing and substantially symmetrical with respect to the center of the casing. The actuating means comprises actuating members, each corresponding to the hinged joint, and sliding in the casing parallel to the longitudinal axis of the casing. Each of the actuating members has a forward end part pivotally joined to the outer member of the hinged joint at an eccentric position on the outer member, and a base end part provided with a projection in engagement with the guide groove of the casing. And each of the actuating members is moved forward and backward by turning the casing about its longitudinal axis to turn the outer member of the corresponding hinge.
In the baby carriage folding mechanism according to the first embodiment of the present invention, each of the guide grooves has curvilinear circumferentially extending portions formed at the starting and the terminating ends thereof.
In the baby carriage folding mechanism according to the first embodiment of the present invention, in an alternative arrangement the guide grooves are formed with inclinations that are different from each other.
In the baby carriage folding mechanism according to the present invention, in a further alternative arrangement each of the guide grooves has a section on which a large load is loaded, and the inclination of the section with respect to circumferential direction of the casing is small.
In the baby carriage folding mechanism according to another embodiment of the present invention, an operating member is placed on the casing for forward and backward movement. The operating member is provided with substantially symmetrical guide grooves inclined relative to a direction in which the operating member is moved. The actuating means comprises actuating members provided for axial sliding movement in the casing, each with actuating member corresponding to the corresponding hinged joint. Each of the actuating members has a forward end part pivotally joined to the outer member of the hinged joint at an eccentric position on the outer member, and a base end part provided with a projection in engagement with the guide groove of the operating member, so that the actuating members are moved forward and backward by moving the operating member forward and backward to turn the outer members of the hinged joints.
In the baby carriage folding mechanism according to another embodiment of the present invention, an operating member and a pulley to be turned by the operating member are provided on the casing. The actuating means comprises actuating members provided for axial sliding movement in the casing, with each actuating member corresponding to a hinged joint. Each of the actuating members has a forward end part joined pivotally to the outer member of the hinged joint at an eccentric position on the outer member, and a base end part. One of the base end part of the actuating member and the pulley is provided with a slot, and the other is provided with a projection that is engaged with the slot.
In the baby carriage folding mechanism according to another embodiment of the present invention, an operating member and a pulley to be turned by the operating member are provided on the casing. The actuating means comprises an actuating member provided for axial sliding movement in the casing, wherein the actuating member has opposite ends pivotally joined to the outer members of the hinged joints at eccentric positions on the outer members, respectively. One of a middle part of the actuating member and the pulley is provided with a slot, and the other is provided with a projection that is engaged with the slot.
In the baby carriage folding mechanism according to another embodiment of the present invention, the actuating means comprises actuating members provided for axial sliding movement in the casing, with each actuating member corresponding to the hinged joint. Each of the actuating members has a forward end part pivotally joined to the outer member of the hinged joint at an eccentric position on the outer member, and a base end part having a thread or a rack. And a helical gear is interposed between the base end parts of the actuating members are provided with the thread or a pinion.
In the baby carriage folding mechanism according to another embodiment of the present invention, the actuating means comprises actuating members provided for axial sliding movement in the casing, with each actuating member corresponding to the hinged joint. The actuating members are connected to eccentric parts of the outer members of the hinged joints through springs, respectively, and one end of a wire is connected to each actuating member while the other end of the wire is connected to a rear end of an armrest attached to each pipe forming the handle.
The baby carriage folding mechanism according to the present invention further comprises an unlocking mechanism placed in the casing, for unlocking locking members that lock the baby carriage in a developed state.
a) to 3(d) are views showing modifications of grooves formed in a casing;
a) is a sectional view of a baby carriage folding mechanism in a second embodiment according to the present invention in a state where an associated baby carriage is developed;
b) is a sectional plan view of the baby carriage folding mechanism shown in
c) is a sectional view of the baby carriage folding mechanism shown in
d) is a sectional plan view of the baby carriage folding mechanism shown in
a) is a schematic view of a baby carriage folding mechanism in a third embodiment according to the present invention in a state where an associated baby carriage is developed;
b) is a schematic view of the baby carriage folding mechanism shown in
a) is a plan view of a baby carriage folding mechanism in a fourth embodiment according to the present invention;
b) is a longitudinal sectional view of the baby carriage folding mechanism shown in
c) is a view of assistance in explaining the operation of the baby carriage folding mechanism shown in
A folding baby carriage will be described with reference to
The right and the left front legs 12 are connected by a front connecting rod 21, and the right and the left rear legs 14 are connected by a rear connecting rod 22. A connecting rod 23 has a front end joined pivotally to a middle part of each front leg 12, and a rear end joined pivotally together with the bracket 19 to the lower end of the pipes 18 of the handle 30. Middle parts of the right and left connecting rods 23 are connected by an upper connecting rod 24.
As shown in
The handle 30, the front connecting rod 21, the rear connecting rod 22 and the upper connecting rod 24 are provided in their middle parts with right and left joints and are foldable. The right joints of the handle 30, the front connecting rod 21, the rear connecting rod 22 and the upper connecting rod 24 are in a right vertical plane, and the left joints of the same are in a left vertical plane. When the right and the left pipes 18 of the handle 30 are moved forward after extending the front legs 12 and the rear legs 14 parallel to each other, opposite end portions of the handle 30, the front connecting rod 21, the rear connecting rod 22 and the upper connecting rod 24 are turned forward and the baby carriage can be folded into a compact package as shown in
The baby carriage folding mechanism 31 will be described with reference to
The stationary member 34 is provided with grooves 37a and 37b extending parallel to the axis of the stationary member 34 in diametrically opposite portions thereof. Actuating members 38a and 38b are placed in the grooves 37a and 37b, respectively, for sliding along the grooves 37a and 37b. The actuating members 38a and 38b are provided in their end parts with slots 39a and 39b, respectively, as shown in
The two joints 33 thus constructed are disposed so that the axes of the stationary members 34 thereof are aligned with each other, and the respective stationary members 34 of the right and the left joints 33 are connected by the casing 32. The right and the left stationary members 34 are fitted in opposite end parts of the casing 32 so that the casing 32 is able to turn relative to the stationary members 34.
Pairs of guide grooves 42a and 42b are formed substantially symmetrically on the inner circumferences of opposite end parts of the casing 32. The guide grooves 42a and 42b are inclined relative to the axis of the casing 32 and extend through an angular range of about 90°. The projections 41a and 41b projecting from the actuating members 38a and 38b are engaged with the guide grooves 42a and 42b, respectively.
When the casing 32 is turned about its axis relative to the stationary members 34, the projections 41a and 41b are moved axially through the guide grooves 42a and 42b, so that the actuating members 38a and 38b are moved axially. The guide grooves 42a and 42b are formed such that, when the casing 32 is turned in one direction, the actuating member 38a at a position shown in
When the casing 32 is turned in the opposite direction, the actuating member 38a is moved to the left and the actuating member 38b is moved to the right to turn the movable member 35 together with the pipe 18 of the handle 30 from the developed position indicated by the two-dot chain lines to the folded position indicated by the solid lines in
An unlocking mechanism including a pulley 45 for disengaging the locking members 20 mounted on the lower end parts of the pipes 18 of the handle 30 from the locking parts of the brackets 19 is disposed inside the casing 32. An operating knob 47 is supported on the casing 32 and is biased outward by a spring 46. The operating knob 47 is connected to the pulley 45 supported for turning in the casing 32. Ends of wires 48 are connected to the locking members 20 mounted on the lower end parts of the pipes 18 of the handle 30. When the operating knob 47 is depressed against the resilience of the spring 46, the wires 48 are pulled to disengage the locking members 20 from the locking parts of the brackets 19 so that the baby carriage can be folded.
The operation of the baby carriage folding mechanism will be described.
The operating knob 47 is depressed to disengage the locking members 20 from the brackets 19, and the front legs 12 and the rear legs 14 are gathered so as to extend parallel to each other. Subsequently, the casing 32 is turned so that the operating knob 47 moves upward. Then, the actuating members 38a and 38b are moved to the positions indicated by solid lines in
The baby carriage can be folded or developed only by turning the casing 32. Thus, the user is able to fold and develop the baby carriage by a series of successive operations without letting go of the casing 32 even once.
In this embodiment, the guide grooves 42a and 42b formed on the inner surface of the casing 32 are curvilinear and inclined relative to the axis of the casing 32 as shown in
a) to 4(d) show a baby carriage folding mechanism in a second embodiment according to the present invention. As shown in
When the operating member 50 at a position shown in
a) and 5(b) show a baby carriage folding mechanism in a third embodiment according to the present invention including a left actuating member 38b, and a right actuating member 38b2. As shown in
The plate 56 is provided with projections 58a and 58b at symmetrical positions with respect to the axis of the pin 55. The left actuating member 38b1 and the right actuating member 38b2 have base end parts provided with slots 59a and 59b, respectively. The slots 59a and 59b extend in a direction, i.e., a vertical direction in
When the operating member 53 in a state shown in
The baby carriage folding mechanism shown in
In the baby carriage folding mechanisms shown in
When the arm rests 69 are turned upwardly to fold the baby carriage, the sliders 67a and 67b are pulled through the wires 68a and 68b, whereby the springs 66a and 66b are stressed. After the armrests 69 have been turned to their upper limit positions, the front legs 12 and the rear legs 14 have been extended substantially parallel to each other in a double-folded state. When the folding joints in the front connecting rod 21, the rear connecting rod 22 and the upper connecting rod 24 are aligned with two vertical planes, the movable members 35a and 35b of the joints 33 are turned by the resilience of the stressed springs 66a and 66b and, consequently, the baby carriage is folded in three. Thus, the baby carriage can be folded in three by operating the operating knob 47 shown in
In the baby carriage capable of being folded in three, each of the four members, i.e., the handle, the front connecting rod, the rear connecting rod and the upper connecting rod has the right and the left folding joint, and the folding joints have pins, respectively. An auxiliary device, such as a device employing a spring, a device employing a rubber member, a pneumatic damper or a small motor, may be combined with each of the pins of the folding joints to reduce load when operating the folding joints. Two auxiliary devices may be individually combined with the pins or a single auxiliary device may be combined with the two pins.
The baby carriage folding mechanism according to the present invention thus constructed enables the user to fold the baby carriage very easily in two first and then in three by a series of successive operations without letting go of the casing mounted on the handle even once and without folding the opposite side parts of the baby carriage by hand. Thus, the user holding a baby is able to fold the baby carriage easily.
Number | Date | Country | Kind |
---|---|---|---|
1999-289330 | Oct 1999 | JP | national |
This application is a divisional of U.S. application Ser. No. 10/826,399, filed Apr. 19, 2004 now U.S. Pat. No. 7,007,968, which is a divisional of U.S. application Ser. No. 10/146,116, filed May 16, 2002, now U.S. Pat. No. 6,752,413 which is a divisional of U.S. application Ser. No. 09/569,052, filed May 10, 2000, now U.S. Pat. No. 6,422,587.
Number | Name | Date | Kind |
---|---|---|---|
4191397 | Kassai | Mar 1980 | A |
4272100 | Kassai | Jun 1981 | A |
4335893 | Carmichael et al. | Jun 1982 | A |
4506907 | Miyagi | Mar 1985 | A |
4545599 | Kassai | Oct 1985 | A |
4614454 | Kassai | Sep 1986 | A |
4619542 | Kassai | Oct 1986 | A |
5205579 | Kato et al. | Apr 1993 | A |
5511441 | Arai | Apr 1996 | A |
5535483 | Jane Cabagnero | Jul 1996 | A |
5669623 | Onishi | Sep 1997 | A |
5752738 | Onishi et al. | May 1998 | A |
5810382 | Onishi | Sep 1998 | A |
5819892 | Deliman et al. | Oct 1998 | A |
6068284 | Kakuda | May 2000 | A |
6129373 | Cheng | Oct 2000 | A |
6339862 | Cheng | Jan 2002 | B1 |
6422587 | Yamazaki et al. | Jul 2002 | B1 |
6443479 | Huang | Sep 2002 | B2 |
6485216 | Cheng | Nov 2002 | B1 |
6824161 | Iwata | Nov 2004 | B2 |
6851700 | Yoshie et al. | Feb 2005 | B2 |
6860504 | Suga et al. | Mar 2005 | B2 |
6877760 | Wang | Apr 2005 | B2 |
6893031 | Suzuki | May 2005 | B2 |
7007968 | Yamazaki et al. | Mar 2006 | B2 |
7021650 | Chen | Apr 2006 | B2 |
7114743 | Kassai et al. | Oct 2006 | B2 |
20040245748 | Wang | Dec 2004 | A1 |
20050029775 | Chen | Feb 2005 | A1 |
20050121882 | Suga et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
0 732 251 | Sep 1996 | EP |
1170193 | Sep 2002 | EP |
1-297372 | Nov 1989 | JP |
Number | Date | Country | |
---|---|---|---|
20060097486 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10826399 | Apr 2004 | US |
Child | 11317147 | US | |
Parent | 10146116 | May 2002 | US |
Child | 10826399 | US | |
Parent | 09569052 | May 2000 | US |
Child | 10146116 | US |