The present invention is directed generally to electrical cable connectors, and more particularly to coaxial connectors for electrical cable.
Coaxial cables are commonly utilized in RF communications systems. A typical coaxial cable includes an inner conductor, an outer conductor, a dielectric layer that separates the inner and outer conductors, and a jacket that covers the outer conductor. Coaxial cable connectors may be applied to terminate coaxial cables, for example, in communication systems requiring a high level of precision and reliability.
Coaxial connector interfaces provide a connect/disconnect functionality between a cable terminated with a connector bearing the desired connector interface and a corresponding connector with a mating connector interface mounted on an apparatus or on another cable. Typically, one connector will include a structure such as a pin or post connected to an inner conductor and an outer conductor connector body connected to the outer conductor; these are mated with a mating sleeve (for the pin or post of the inner conductor) and another outer conductor connector body of a second connector. Coaxial connector interfaces often utilize a threaded coupling nut or other retainer that draws the connector interface pair into secure electro-mechanical engagement when the coupling nut (which is captured by one of the connectors) is threaded onto the other connector.
As a first aspect, embodiments of the invention are directed to a back body for a cable-connector assembly, comprising: an annular central portion; an annular mating portion that merges with one end of the central portion and is configured to mate with an outer conductor extension of a coaxial connector; and a plurality of fingers that extend axially from an opposite end of the central portion, the fingers being configured to flex inwardly to engage a jacket of a coaxial cable. The central portion, the mating portion, and the fingers define a bore configured to receive the coaxial cable. A radial clamp is configured to apply radially-inwardly directed pressure to the fingers.
As a second aspect, embodiments of the invention are directed to a coaxial cable-connector assembly a coaxial cable, a coaxial connector, and a back body. The coaxial cable comprises: an inner conductor having a termination end; a first dielectric layer that overlies the inner conductor; an outer conductor that overlies the first dielectric layer having a termination end; and a jacket that overlies the outer conductor having a termination end. The coaxial connector comprises an inner contact electrically connected with the termination end of the inner conductor of the coaxial cable and an outer conductor extension electrically connected with the termination end of outer conductor of the coaxial cable. The back body comprises: an annular central portion; an annular mating portion that merges with one end of the central portion and mates with the outer conductor extension; and a plurality of fingers that extend axially from an opposite end of the central portion. The central portion, the mating portion, and the fingers define a bore that receives the coaxial cable. A radial clamp applies radially-inwardly directed pressure to the fingers to flex the fingers radially inwardly to engage the jacket of the coaxial cable.
As a third aspect, embodiments of the invention are directed to a coaxial connector assembly, comprising: an inner contact configured to be electrically connected with the termination end of an inner conductor of a coaxial cable; an outer conductor extension electrically connected with a termination end of an outer conductor of the coaxial cable; and a back body. The back body comprises: an annular central portion; an annular mating portion that merges with one end of the central portion and mates with the outer conductor extension; a plurality of fingers that extend axially from an opposite end of the central portion, wherein the central portion, the mating portion, and the fingers define a bore that is configured to receive the coaxial cable; and a radial clamp that applies radially-inwardly directed pressure to the fingers to flex the fingers radially inwardly to engage the jacket of the coaxial cable.
The present invention is described with reference to the accompanying drawings, in which certain embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments that are pictured and described herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. It will also be appreciated that the embodiments disclosed herein can be combined in any way and/or combination to provide many additional embodiments.
Unless otherwise defined, all technical and scientific terms that are used in this disclosure have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the above description is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in this disclosure, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that when an element (e.g., a device, circuit, etc.) is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Referring again to
Referring now to
As seen in
As can be seen in
The back body 40 may be formed of any material that is sufficiently flexible (conductive or non-conductive) to deflect under the pressure of the radial clamp 60. Exemplary materials include plated brass.
Another embodiment of a back body, designated broadly at 140, is shown in
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
The present application claims the benefit of and priority from U.S. Provisional Patent Application No. 62/113,854, filed Feb. 9, 2015, the disclosure of which is hereby incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6607398 | Henningsen | Aug 2003 | B2 |
6786767 | Fuks et al. | Sep 2004 | B1 |
7189113 | Sattele | Mar 2007 | B2 |
7288002 | Rodrigues | Oct 2007 | B2 |
7637774 | Vaccaro | Dec 2009 | B1 |
7798847 | Islam | Sep 2010 | B2 |
7841896 | Shaw | Nov 2010 | B2 |
7845978 | Chen | Dec 2010 | B1 |
7927135 | Wlos | Apr 2011 | B1 |
7934954 | Chawgo | May 2011 | B1 |
8367944 | Chiou | Feb 2013 | B2 |
8591255 | Holliday | Nov 2013 | B2 |
8944846 | Lee | Feb 2015 | B2 |
9190762 | Xu | Nov 2015 | B2 |
20100130060 | Islam | May 2010 | A1 |
20120171894 | Malloy et al. | Jul 2012 | A1 |
20130178097 | Wild et al. | Jul 2013 | A1 |
20140045357 | Nugent | Feb 2014 | A1 |
Entry |
---|
International Search Report and Written Opinion for corresponding PCT Application No. PCT/US2016/016727, date of mailing May 23, 2016, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20160233610 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62113854 | Feb 2015 | US |