The present document is based on and claims priory to U.S. Provisional Application Ser. No. 62/617,926, filed Jan. 16, 2018, which is incorporated herein by reference in its entirety.
In many hydrocarbon well applications, water injection is used to facilitate production of hydrocarbon fluids. A completion is deployed downhole in a borehole and is configured to enable water injection into the surrounding formation while restricting back flow of water up through the completion if the water injection is shut down. One type of back flow restriction system used in the completion comprises a flow isolation valve located below a combined flapper valve and removable choke. The flow isolation valve may be in the form of a ball valve which may be actuated by pressure pulses or other actuation mechanisms. If the ball valve does not actuate, a shifting tool may be run downhole and engaged with the ball valve. However, use of the shifting tool involves removing the removable choke via an expensive and time-consuming separate run downhole. Additionally, when the shifting tool is run down through the flapper valve it can sometimes get hung up during retrieval back through the flapper valve.
In general, a system and methodology are provided which facilitate injection, e.g. water injection, via an injector well while providing automatic restriction of unwanted back flow. According to an embodiment, a completion is positioned in a borehole to facilitate the injection operation. The completion comprises a packer coupled with a tubing. The packer is oriented to enable formation of a seal between the tubing and a surrounding casing. A flow isolation valve is coupled to the tubing for control of fluid flow along the tubing. Additionally, a mechanical assembly is coupled to the tubing at, for example, a location below the formation isolation valve. The mechanical assembly may comprise a tubing closure member, e.g. a mechanical formation isolation valve or a nipple and plug assembly, and a flow controller. The flow controller is automatically actuatable to enable a flow of injection fluid in a downhole direction while blocking fluid flow in an uphole direction while the tubing closure member is in a closed position.
However, many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein, and:
In the following description, numerous details are set forth to provide an understanding of some embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
In the specification and appended claims: the terms “connect,” “connection,” “connected,” “in connection with,” “connecting,” “couple,” “coupled,” “coupled with,” and “coupling” are used to mean “in direct connection with” or “in connection with via another element.” As used herein, the terms “up” and “down,” “upper” and “lower,” “upwardly” and “downwardly,” “upstream” and “downstream,” “uphole” and “downhole,” “above” and “below,” and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly describe some embodiments of the disclosure.
The present disclosure generally relates to a system and methodology which facilitate injection, e.g. water injection, via an injector well while providing automatic restriction of unwanted back flow. According to an embodiment, a completion is positioned in a borehole to facilitate the injection operation. The completion comprises features which facilitate controlled injection of water or other injection fluids into a surrounding formation. Additionally, the completion comprises features which automatically prevent back flow of fluid up through the completion when the injection operation is shut down, e.g. interrupted/stopped.
In various embodiments, the completion may comprise a packer coupled with a tubing. The packer is oriented to enable formation of a seal between the tubing and a surrounding casing. A flow isolation valve is coupled to the tubing for control of fluid flow along the tubing. Additionally, a mechanical assembly is coupled to the tubing at a suitable location, e.g. a location below the formation isolation valve. The mechanical assembly may comprise a tubing closure member and a flow controller. Examples of tubing closure members include a mechanical formation isolation valve and a nipple and plug assembly. The flow controller may have various configurations and is automatically actuatable to enable a flow of injection fluid in a downhole direction while blocking back flow of fluid in an uphole direction while the tubing closure member is in a closed position.
Referring generally to
As explained in greater detail below, the formation isolation valve 50 and the mechanical assembly 52 work in cooperation to control flow along an interior 60 of the completion 40. The mechanical assembly 52 may comprise various features such as a mechanical formation isolation valve and flow controller to enable injection of fluid while automatically restricting back flow of fluid up along interior 60. In the example illustrated, a shifting tool 62 is illustrated as deployed on a wash pipe 64 for actuation of components such as formation isolation valve 50 and mechanical assembly 52. For example, the shifting tool 62 may be used to close the mechanical assembly 52 and the formation isolation valve 50 and then pulled out of hole, as illustrated in
Subsequently, an upper completion 66 may be run downhole into borehole 42 and landed on downhole completion 40, e.g. the lower completion, as illustrated in
Once the upper completion 66 is engaged with the lower completion 40, the formation isolation valve 50 may be opened and injection of water (or other suitable injection fluid) may be initiated, as illustrated in
Referring generally to
By way of example, the mechanical assembly 52 may comprise a tubing closure member 86 combined with a flow controller 88. The tubing closure member 86 may be in the form of a mechanical formation isolation valve. In the illustrated example, the mechanical formation isolation valve 86 may be actuated between a closed position and an open position with respect to flow along interior 60 through tubing 84. However, the flow controller 88 serves as a flow restrictor which allows flow of injection fluid 82 even when the mechanical formation isolation valve 86 is in a closed position, as illustrated in
Referring generally to
In this example, the flow controller 88 comprises a disk flow restrictor having a disk 92 which works in cooperation with an opening or openings 94 through the ball of ball valve 90. The disk 92 may be biased to a closed position via a spring 96, e.g. a coil spring, acting between the disk 92 and a corresponding disk retaining feature 98, e.g. a disk retaining bolt. As further illustrated in
As illustrated in
Referring generally to
In this embodiment, the mechanical formation isolation valve 86 may again be in the form of ball valve 90 which may be actuated between an open position and a closed position. However, the flow controller 88 has a different configuration and utilizes a plurality of flow restrictors 104 positioned about tubing 84 in one or more layers. The flow restrictors 104 may be constructed as balls 106 contained in chambers 108, as further illustrated in
During injection, injection fluid 82 flows down through the interior 60 (which continues along the interior of tubing 84). The injection fluid 82 flows past open formation isolation valve 50 and laterally out of tubing 84 through openings 110. The injection fluid 82 flows around the exterior of mechanical formation isolation valve 86 and back into the interior of tubing 84 through flow restrictors 104, as illustrated in
If flow of injection fluid 82 is interrupted, e.g. stopped, the flow restrictors 104 prevent the back flow of fluid from the interior of tubing 84 to an exterior. In this example, the back flowing fluid 102 moves the balls 106 to seated positions in chambers 108, thus preventing further flow therethrough in the back flow direction. Consequently, back flow of fluid 102 is prevented by flow restrictors 104 and the closed mechanical formation isolation valve 86, as illustrated in
Referring generally to
In this embodiment, the mechanical formation isolation valve 86 may again be in the form of ball valve 90 which may be actuated between an open position and a closed position. However, the flow controller 88 has a different configuration and utilizes an inline flow restrictor 114 positioned along tubing 84. The inline flow restrictor 114 may be constructed with a shiftable mandrel 116 contained in a mandrel housing 118, as further illustrated in
During injection, injection fluid 82 flows down through the interior 60 and thus along the interior of tubing 84. The injection fluid 82 flows past open formation isolation valve 50 and laterally out of tubing 84 through openings 110. The injection fluid 82 flows around the exterior of mechanical formation isolation valve 86 and back into the interior of tubing 84 through inline flow restrictor 114, as illustrated in
If flow of injection fluid 82 is interrupted, e.g. stopped, the inline flow restrictor 114 prevents the back flow of fluid 102 from the interior of tubing 84 to an exterior. Consequently, back flow of fluid 102 is prevented by inline flow restrictor 114 and the closed mechanical formation isolation valve 86, as illustrated in
Referring generally to
In this embodiment, the flow controller 88 again serves as a flow restrictor which allows flow of injection fluid 82 even when flow is blocked by a plug 128, as illustrated in
Although a few embodiments of the disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
4220176 | Russell | Sep 1980 | A |
4393930 | Ross et al. | Jul 1983 | A |
4846221 | Kanemaru | Jul 1989 | A |
5529126 | Edwards | Jun 1996 | A |
6354378 | Patel | Mar 2002 | B1 |
7090020 | Hill | Aug 2006 | B2 |
7849925 | Patel | Dec 2010 | B2 |
7950454 | Patel | May 2011 | B2 |
8408314 | Patel et al. | Apr 2013 | B2 |
9222334 | Erkol | Dec 2015 | B2 |
20020066573 | Patel | Jun 2002 | A1 |
20060162932 | McCalvin | Jul 2006 | A1 |
20070187107 | Pringle | Aug 2007 | A1 |
20090071651 | Patel | Mar 2009 | A1 |
20110079382 | Patel | Apr 2011 | A1 |
20120199365 | Patel et al. | Aug 2012 | A1 |
20120205114 | Biddick et al. | Aug 2012 | A1 |
20140083689 | Streich et al. | Mar 2014 | A1 |
20140332224 | Pogoson | Nov 2014 | A1 |
20170292347 | Mailand et al. | Oct 2017 | A1 |
20170356272 | Pinard et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2016191584 | Dec 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20190218887 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62617926 | Jan 2018 | US |