This invention relates to a device for protecting the back wall of a fuel injector nozzle during laser drilling of the nozzle holes.
The fuel injector nozzle of combustion engines has an internal fuel path, and liquid fuel is sprayed out of the nozzle from the fuel path through several micro nozzle holes. The micro holes can be created by a laser drilling process. During laser drilling, once the laser penetrates the nozzle wall to form the micro hole, the laser beam path continues from the hole through the inside of the nozzle to the opposite internal surface of the nozzle, causing potential damage to that surface, called the back wall. A device to protect the back wall during laser drilling of fuel injector nozzle holes is desirable.
A back wall protection device for laser drilling a fuel injector nozzle hole has a hollow shaft. The hollow shaft has a pressure path and a cylinder on top of the pressure path. An actuator, preferably a piston, is disposed in the cylinder, and a back wall protection component rests on top of the actuator. The back wall protection device is inserted in the fuel path of a fuel injector nozzle to be laser drilled. The actuator can be pushed upwards towards the nozzle tip, so that the back wall protection component blocks a laser beam path from a desired nozzle hole location to the back wall. When the actuator is a piston, pressurized fluid is introduced into the pressure path to push the piston and back wall protection component up towards the nozzle tip, so that the back wall protection component blocks a laser beam path from a desired nozzle hole location to the back wall. The actuator may also be a motor-driven linear actuator that can push the back wall protection component up towards the nozzle tip. A laser is then applied to the laser beam path to drill a nozzle hole at the desired location. When the laser penetrates the nozzle wall to form the nozzle hole, the laser will strike the back wall protection component that is blocking the laser beam path to the back wall, thereby protecting the back wall from laser damage.
Aspects, features, benefits, and advantages of the embodiments herein will be apparent with regard to the following description, appended claims, and accompanying drawings. In the following figures, like numerals represent like features in the various views. It is to be noted that features and components in these drawings, illustrating the views of embodiments of the presently disclosed invention, unless stated to be otherwise, are not necessarily drawn to scale.
In this section, some preferred embodiments of the present invention are described in detail sufficient for one skilled in the art to practice the present invention. It is to be understood, however, that the fact that a limited number of preferred embodiments are described herein does not in any way limit the scope of the present invention as set forth in the appended claims.
Other configurations may be used to retain the piston within the cylinder. For example, the pressure path and cylinder may have the same diameter, with a mechanical barrier between the pressure path and cylinder that retains the piston in the cylinder but allows pressurized media to pass from the pressure path to the cylinder to actuate the piston. In other configurations, the actuator for the back wall protection component is a motor-driven linear actuator instead of a piston.
The device shown in
Accordingly, a method of laser drilling a fuel injector nozzle hole using the back wall protection device shown in
The back wall protection component 3 may be a ball-type part made of thermal or laser beam resistant material. The thermal or laser beam resistant material may be metal, ceramics, sapphire, or ruby. The metal may be steel, carbide, copper, tungsten alloy, or other metal alloy. Because the laser beam strikes the back wall protection component 3 when the nozzle hole 10 is drilled through, the protection component 3 will be damaged. Therefore, the back wall protection component 3 should be replaced when necessary. The back wall protection component 3 may be in any shape according to the needs and requirements of the drilling process.
The disclosed back wall protection device can be used in any process of drilling of nozzle injectors of combustion engines, including laser beam drilling, electrical-discharge-machining (EDM) drilling, ultrasonic drilling, abrasive water drilling, mechanical drilling, etc.
Nothing in the above description is meant to limit the present invention to any specific materials, geometry, or orientation of elements. Various changes could be made in the construction and methods disclosed above without departing from the scope of the invention are contemplated within the scope of the present invention and will be apparent to those skilled in the art. The embodiments described herein were presented by way of example only and should not be used to limit the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
201711090740.9 | Nov 2017 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
2795688 | McCaffrey, Sr. | Jun 1957 | A |
4748899 | Cote | Jun 1988 | A |
5115113 | Miller | May 1992 | A |
6020569 | Cecil | Feb 2000 | A |
6070813 | Durheim | Jun 2000 | A |
6825436 | Aoyama | Nov 2004 | B1 |
7301121 | Callies et al. | Nov 2007 | B2 |
20070175872 | Rhoades et al. | Aug 2007 | A1 |
20090032508 | Kobayashi | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
207534182 | Jun 2018 | CN |
0009884 | Feb 2000 | WO |
2007089469 | Aug 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20180354077 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62518963 | Jun 2017 | US |