The present invention relates generally to communication systems, and more particularly to video conferencing and video telephony.
Clarity of an image presented to a videoconferencing participant is an important aspect of videoconferencing and video-telephony systems. Attainment of sufficient clarity is particularly challenging in group videoconferencing applications, in which more than one participant is present at one or both ends of the videoconferencing session. In such cases, a camera that is used to capture the participants is typically zoomed out so that the camera can capture all the participants of the group. However, zooming out diminishes the sizes of the participants as they appear in the captured image. In other words, the number of pixels dedicated to each of the most interesting parts—the participants or other regions of interest (ROI)—are reduced. As a result, when the image is sent to the far end, the images of participants within the image are less clearly seen by the far end participants.
For example,
To elaborate, transmitting the image 101 to the far end can have further adverse impact on clarity. For example, compression, down-sampling, etc. may be carried out on an image to be transmitted to the far end in order to meet transmission bandwidth limits.
One traditional solution is to use multiple cameras, where each camera captures only the face/torso of one participant, and to combine the individual captured images in a so-called “Hollywood Squares” fashion to form a composite image, as shown in
Thus, it is desirable to have a technique that not only provides clearer images of the interesting regions of a captured image, but also maintains relative spatial arrangements of local participants in the captured image.
A videoconferencing unit processes an input image to produce an output image such that the proportion of image area occupied by ROI in the input image is increased in the output image. First, ROI such as portions of the image including participants, are determined. Then background regions are determined and reduced in area. This results in the proportion of the area of the ROI to increase compared to their proportions in the original image. Whether the image is stored and retrieved or transmitted to a far end display, the ROI can be seen more clearly despite down-sampling, lossy compression, and limited display resolution and size. The process also preserves relative spatial relationship between various ROI.
The image can also be cropped before the background regions are determined, in order to produce an intermediate image containing the ROI but as little as possible of the less interesting areas of the input image. Cropping can be carried out as a function of the target aspect ratio of the image. Alternatively, a pan-tilt-zoom camera can be controlled to zoom in such that the ROI occupy the maximum possible area of the image frame without being cut off.
The ROI and the background regions can be of various shapes and sizes. In one example, the ROI and the background regions can be rectangular in shape. The background regions can include rectangular vertical and horizontal regions that cover as much area of the image as possible without including any portion of the ROI. The background regions can be compressed by employing linear or non-linear compression. The degree of compression can also be adjusted in order to maintain the desired aspect ratio of the final image.
In one example, the image processing system can transmit or store information regarding the location and process used to perform the compression of the background regions. This information can be used upon receipt or retrieval to decompress the compressed background regions and reproduce the original image, but with more detail in the uncompressed regions than would have been present if traditional techniques were used.
Exemplary embodiments of the present invention will be more readily understood from reading the following description and by reference to the accompanying drawings, in which:
Of course, the ROI can have a shape and size that is different from the ones shown in
In another example, the ROI may include objects other than the participants. Such objects may include, for example, a writing board, a display screen, labels displaying names of the participants, company logos, objects being discussed such as samples or prototypes, works of art, etc.
In yet another example, one or more ROI may be selected by the near end participants. This can be accomplished by displaying the image 101 to the local participants on display 312, and allowing the user to select areas on the image 101 with the aid of a graphical user interface. ROI may be selected by the far end participants using a graphical user interface as well. Information on the selected ROI can be received by the CPU 313 via communication interface 314. The information can include shapes, sizes, and location of the ROI in the original image.
Once the ROI have been determined, the CPU 313 can be programmed to manipulate the image 101 such that the proportion of the output image area representing interesting portions of the input image 101 to the area representing non-interesting portions of the input image 101 is improved (i.e., increased). One way of increasing the proportion of the area of ROI is to crop away the portions of the image that are outside the region of interest while maintaining the aspect ratio of the intended transmitted image. For example,
Boundaries 501-504 form a rectangular region that includes all the ROI 402, 403, and 404 encompassing participants 102, 103, and 104 respectively. Image 101 can be cropped to the rectangular region. We can denote the bottom left corner of the rectangle having pixel coordinates [i,j] and the top right corner of the rectangle having pixel coordinates [k,l] (where i and k are pixel rows, and j and l are pixel columns). Then assuming that the aspect ratio of the transmitted image is AR, image 101 can be cropped along the perimeter of a rectangle having bottom left pixel coordinates as: [(k+i)/2−(l−j)/2*AR, j], and the top right pixel coordinates as: [(k+i)/2+(l−j)/2*AR, j]. In other words, the image is cropped to the width of the rectangle, and the height is adjusted based on the aspect ratio to center the ROI vertically.
While the rectangle encompassing the ROI 402-404 in
Another way of maximizing the proportion of the ROI in an image can be by adjusting the camera's pan-tilt-zoom controls such that the ROI occupy maximum possible area/pixels within a frame captured by the camera. For example, the image 107 shown in
The proportion of the ROI in image 107 can be increased further by carrying out geometric background compression. In geometric background compression, portions of the image that do not belong to the ROI are be compressed to a smaller size. By applying geometric background compression to a region, the CPU 313 can reduce the spatial dimensions of the region while at the same time retaining most of the visual information within the region. Geometric compression is unlike cropping, in which visual information within some portions of a cropped region may be completely discarded. CPU 313 may identify one or more portions of the background for compression. This results in the ROI occupying a larger proportion of the image. Consequently, when a background compressed image is displayed, the ROI are larger and easier to view. Because the background compressed image is smaller in size as compared to the original image, the background compressed image may advantageously require a reduced amount of down-sampling for video compression and transmission. Even if no down-sampling is performed, the smaller background compressed image would advantageously require less bandwidth than that required by the original image.
Referring to
While
An aggregate compressible background region of image 107 can be obtained by combining the horizontal background regions and the vertical background regions, as shown in
In one example, the compression ratio used to compress the horizontal and vertical background regions can be a function of the target aspect ratio of the output image (which often, but not always, will be the same as the aspect ratio of the input image). The target aspect ratio, as may be recalled, is the aspect ratio of the final image that is transmitted or stored. To determine the compression ratio, a set of variables can be defined as follows:
If V>H, i.e., the proportion of the height of the image covered by horizontal compressible background regions (e.g., horizontal regions 601 and 602) is greater than the proportion of the width of the image covered by vertical compressible background regions (e.g., vertical regions 701, 702, 703, and 704) therefore the horizontal compressible background regions can be compressed with maximum compression ratio M (i.e., CH=M). Then, in order to maintain the target aspect ratio AR, the vertical compressible background regions can be compressed by the compression ratio CV=V/((H−H/M)*AR).
Similarly, if V<=H, the vertical compressible background regions can be compressed with maximum compression ratio M (i.e., CV=M). Then, in order to maintain the target aspect ratio of AR, the horizontal compressible background regions can be compressed by the compression ratio CH=((H−H/M)*AR)/V. Whether V>H or V<=H, the resultant background compressed image will contain the ROI 402-404 centered both horizontally and vertically within the area of the image.
The CPU 313 can use linear compression algorithms, non-linear compression algorithms, or any combination thereof. Note that values CV and CH are averages—the actual amount of compression applied to any sub-region may be equal to CV or CH, or may vary. Variable, non-linear compression, in which sub-regions far from the edges of the compressible region are compressed more than sub-regions close to the edges, may result in a more natural looking image with less obvious artifacts from the background compression. In another example of non-linear compression, sub-regions near the center of a compressible background region is compressed with a larger compression ratio than a sub-region farther away from the center. In the example of
In another example, the compression ratio used to compress the horizontal and vertical background regions can be independent of the target aspect ratio AR. In such cases, both the horizontal and vertical background regions can be compressed with maximum compression ratio M (i.e., CH=CV=M). Of course, the resultant background compressed image may have an aspect ratio that is different from the target aspect ratio and may in fact be a function of V and H.
Typically, the background compressed image 108 can be sent to the far end for display, or stored (e.g., in memory 318) for future playback or display. However, some applications my want to reproduce the original image from the background compressed image. This would offer the advantages of improved resolution and detail in the ROI but with no geometric distortions from the background compression process. To provide for this decompression process, the parameters needed to reverse the geometric background compression can be sent with the background compressed image or stored with the stored background compressed image as compression information. In the preferred embodiment, such parameters would include the values of CV and CH listed in Table 1 above for each compressible background region, the method of compression used for each such region (linear, non-linear, etc.), the locations of each horizontal and vertical compressible background region, and the order in which the various background regions were compressed. The configuration information can be concatenated to the image 808 as metadata, or sent in a separately.
To decompress the background compressed image 108, the decompression operations can be carried out in reverse order according to the associated compression information. For example, if horizontal region 601 was compressed last with a linear compression ratio M, making it smaller by a factor of M, then the horizontal region 601 would be decompressed first by making it larger by a factor of M.
Although
Note that removal and change of boundaries of the ROI and the compressible background areas, and the change of degree of geometric compression applied to each background area in successive images of a video, are applied in a gradual and moderate way to avoid objectionable artifacts.
The background compressed image frames can be encoded by video codec 317 for transmission to the far end or for compressed storage at the near end (e.g., in memory 318). Video codec 317 may down-sample the background compressed image because of transmission bandwidth constraints. But because the proportion of the ROI in image 108 of
The above description is illustrative and not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of this disclosure. The scope of the invention should therefore be determined not with reference to the above description, but instead with reference to the appended claims along with their full scope of equivalents.