Aspects of the present disclosure relate generally to wireless communication systems, and more particularly to backhaul estimation for small cells and the like.
Wireless communication networks are widely deployed to provide various communication services such as telephony, video, data, messaging, broadcasts, and so on. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources. In cellular networks, macro base stations (or macro cells or conventional base stations) provide connectivity and coverage to a large number of users over a certain geographical area. To supplement macro base stations, restricted power or restricted coverage base stations, referred to as small coverage base stations or small cell base stations or small cells, can be deployed to provide more robust wireless coverage and capacity to mobile devices. For example, small cells can be deployed for incremental capacity growth, richer user experience, in-building or other specific geographic coverage, and/or the like.
However, the deployment of small cell base stations may also encroach on the operation of other devices that typically utilize the same space, such as Wireless Local Area Network (WLAN) devices operating in accordance with one of the IEEE 802.11x communication protocols (so-called “Wi-Fi” devices) or other wired or wireless devices sharing the same Internet connection in a user's residence or office building. The unmanaged sharing of common backhaul resources may lead to various throughput and/or data integrity problems for all devices.
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects not delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
The present disclosure presents an example method and apparatus for backhaul management at a small cell base station. For example, in an aspect, the present disclosure presents an example method that may include receiving an indication from a radio resource management (RRM) framework of a small cell base station, wherein the indication received from the RRM framework is related to a coverage problem at a user equipment (UE), and wherein the UE is in communication with the small cell, and modifying a backhaul estimation mechanism at the small cell base station for the UE based on the indication received from the RRM framework of the small cell base station.
Additionally, the present disclosure presents an example apparatus for backhaul management at a small cell base station that may include means for receiving an indication from a radio resource management (RRM) framework of a small cell base station, wherein the indication received from the RRM framework is related to a coverage problem at a user equipment (UE), and wherein the UE is in communication with the small cell, and means for modifying a backhaul estimation mechanism at the small cell base station for the UE based on the indication received from the RRM framework of the small cell base station.
In a further aspect, the present disclosure presents an example non-transitory computer readable medium for backhaul management at a small cell base station comprising code that, when executed by a processor or processing system included within the small cell base station, causes the small cell base station to receive an indication from a radio resource management (RRM) framework of a small cell base station, wherein the indication received from the RRM framework is related to a coverage problem at a user equipment (UE), and wherein the UE is in communication with the small cell, and modify a backhaul estimation mechanism at the small cell base station for the UE based on the indication received from the RRM framework of the small cell base station.
Furthermore, in an aspect, the present disclosure presents an example apparatus for backhaul management at a small cell base station that may include a radio resource management (RRM) indication receiver to receive an indication from a radio resource management (RRM) framework of a small cell base station, wherein the indication received from the RRM framework is related to a coverage problem at a user equipment (UE), and wherein the UE is in communication with the small cell, and a backhaul estimation mechanism modifier to modify a backhaul estimation mechanism at the small cell base station for the UE based on the indication received from the RRM framework of the small cell base station.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known components are shown in block diagram form in order to avoid obscuring such concepts.
The present disclosure presents a method and apparatus for backhaul management at a small cell base station that includes modifying a backhaul estimation mechanism at a small cell base station based on an indication received from radio resource management (RRM) framework of the base station. The indication received from the RRM framework of the small cell base station may be related to a coverage related problem at a user equipment (UE) which is in communication with the small cell base station.
As used herein, the term “small cell” may refer to an access point or to a corresponding coverage area of the access point, where the access point in this case has a relatively low transmit power or relatively small coverage as compared to, for example, the transmit power or coverage area of a macro network based station or macro cell. For instance, a macro cell may cover a relatively large geographic area, such as, but not limited to, several kilometers in radius. In contrast, a small cell may cover a relatively small geographic area, such as, but not limited to, a home, a building, or a floor of a building. As such, a small cell may include, but is not limited to, an apparatus such as a base station (BS), an access point, a femto node, a femtocell, a pico node, a micro node, a wireless relay station, a Node B, evolved Node B (eNB), home Node B (HNB) or home evolved Node B (HeNB). Therefore, the term “small cell,” as used herein, refers to a relatively low transmit power and/or a relatively small coverage area cell as compared to a macro cell.
Each user device 106 may communicate with one or more of the base stations 104 on a downlink (DL) and/or an uplink (UL). In general, a DL is a communication link from a base station to a user device, while an UL is a communication link from a user device to a base station. The base stations 104 may be interconnected by appropriate wired or wireless interfaces allowing them to communicate with each other and/or other network equipment. Accordingly, each user device 106 may also communicate with another user device 106 through one or more of the base stations 104. For example, the user device 106J may communicate with the user device 106H in the following manner: the user device 106J may communicate with the base station 104D, the base station 104D may then communicate with the base station 104B, and the base station 104B may then communicate with the user device 106H, allowing communication to be established between the user device 106J and the user device 106H.
The wireless communication network 100 may provide service over a large geographic region. For example, the cells 102A-102G may cover a few blocks within a neighborhood or several square miles in a rural environment. In some systems, each cell may be further divided into one or more sectors (not shown). In addition, the base stations 104 may provide the user devices 106 access within their respective coverage areas to other communication networks, such as the Internet or another cellular network. Each user device 106 may be a wireless communication device (e.g., a mobile phone, router, personal computer, server, etc.) used by a user to send and/or receive voice and/or data over a communications network, and may be alternatively referred to as an Access Terminal (AT), a Mobile Station (MS), a User Equipment (UE), etc. In the example shown in
For their wireless air interfaces, each base station 104 may operate according to one of several Radio Access Technologies (RATs) depending on the network in which it is deployed, and may be alternatively referred to as a NodeB, evolved NodeB (eNB), etc. These networks may include, for example, Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, Single-Carrier FDMA (SC-FDMA) networks, and so on. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a RAT such as Universal Terrestrial Radio Access (UTRA), cdma2000, etc. UTRA includes Wideband-CDMA (W-CDMA) and Low Chip Rate (LCR). cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a RAT such as Global System for Mobile Communications (GSM). An OFDMA network may implement a RAT such as Evolved UTRA (E-UTRA), IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM®, etc. UTRA, E-UTRA, and GSM are part of Universal Mobile Telecommunication System (UMTS). One example of such a network is the UMTS Terrestrial Radio Access Network (UTRAN). The UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS), a third generation (3G) mobile phone technology supported by the 3rd Generation Partnership Project (3GPP). The UMTS, which is the successor to Global System for Mobile Communications (GSM) technologies, currently supports various air interface standards, such as Wideband-Code Division Multiple Access (W-CDMA), Time Division-Code Division Multiple Access (TD-CDMA), and Time Division-Synchronous Code Division Multiple Access (TD-SCDMA). The UMTS also supports enhanced 3G data communications protocols, such as High Speed Packet Access (HSPA), which provides higher data transfer speeds and capacity to associated UMTS networks.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example of an emerging telecommunication standard is Long Term Evolution (LTE). LTE is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by Third Generation Partnership Project (3GPP). It is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA on the downlink (DL), SC-FDMA on the uplink (UL), and multiple-input multiple-output (MIMO) antenna technology. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
Long Term Evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS, and LTE are described in documents from an organization named “3rd Generation Partnership Project” (3GPP). cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3 GPP2).
In cellular networks, macro base stations (or macro cells or conventional base stations) provide connectivity and coverage to a large number of users over a certain geographical area. A macro cell network deployment is carefully planned, designed, and implemented to offer good coverage over the geographical region. Even such careful planning, however, cannot fully accommodate channel characteristics such as fading, multipath, shadowing, etc., especially in indoor environments. Indoor users therefore often face coverage issues (e.g., call outages and quality degradation) resulting in poor user experience. Further, macro cell capacity is upper-bounded by physical and technological factors.
Thus, as discussed above, small cell base stations may be used to provide significant capacity growth, in-building coverage, and in some cases different services than macro cells operating alone, thereby facilitating a more robust user experience.
In
Turning to the illustrated connections in more detail, user equipment 220 may generate and transmit a message via a wireless link to the macro cell base station 205, the message including information related to various types of communication (e.g., voice, data, multimedia services, etc.). User equipment 222 may similarly communicate with small cell base station 210 via a wireless link, and user equipment 221 may similarly communicate with small cell base station 212 via a wireless link. The macro cell base station 205 may also communicate with a corresponding wide area or external network 240 (e.g., the Internet), via a wired link or via a wireless link, while small cell base stations 210 and/or 212 may also similarly communicate with network 240, via their own wired or wireless links. For example, small cell base stations 210 and/or 212 may communicate with network 240 by way of an Internet Protocol (IP) connection, such as via a Digital Subscriber Line (DSL, e.g., including Asymmetric DSL (ADSL), High Data Rate DSL (HDSL), Very High Speed DSL (VDSL), etc.), a TV cable carrying IP traffic, a Broadband over Power Line (BPL) connection, an Optical Fiber (OF) cable, or some other link. This connection may utilize the existing backhaul infrastructure provided by, for example, an ISP for the residential home or office building in which small cells 210 and 212 are installed, and may accordingly be shared among other devices operating in the same environment, such as Wireless Local Area Network (WLAN) devices operating in accordance with one of the IEEE 802.11x communication protocols (so-called “Wi-Fi” devices) or other wired or wireless devices sharing the same Internet connection in a user's residence or office building.
The network 240 may comprise any type of electronically connected group of computers and/or devices, including, for example, the following networks: Internet, Intranet, Local Area Networks (LANs), or Wide Area Networks (WANs). In addition, the connectivity to the network may be, for example, by remote modem, Ethernet (IEEE 802.3), Token Ring (IEEE 802.5), Fiber Distributed Datalink Interface (FDDI) Asynchronous Transfer Mode (ATM), Wireless Ethernet (IEEE 802.11), Bluetooth (IEEE 802.15.1), or some other connection. As used herein, the network 240 includes network variations such as the public Internet, a private network within the Internet, a secure network within the Internet, a private network, a public network, a value-added network, an intranet, and the like. In certain systems, the network 240 may also comprise a Virtual Private Network (VPN).
Accordingly, it will be appreciated that macro cell base station 205 and/or either or both of small cell base stations 210 and 212 may be connected to network 240 using any of a multitude of devices or methods. These connections may be referred to as the “backbone” or the “backhaul” of the network, and may in some implementations be used to manage and coordinate communications between macro cell base station 205, small cell base station 210, and/or small cell base station 212. In this way, depending on the current location of user equipment 222, for example, user equipment 222 may access the communication network 240 by macro cell base station 205 or by small cell base station 210.
In an aspect, a small cell base station (or a small cell) 320 is installed in user residence 304 and serves one or more nearby user equipments (UE) 322 as described above. The small cell base station 320 via its connection to home router 302 and shared backhaul link 310 may provide access to Internet 306 and core network 316. Since the backhaul link 310 is shared between the traffic managed by small cell 320 (e.g., native traffic) and traffic generated by other devices that home router 302 may be serving (e.g., cross traffic), there is a potential for congestion of uplink (UL) traffic, down link (DL) traffic, and/or both, with varying degrees of impact on the performance of the small cell and/or other devices sharing the backhaul link 310.
In an aspect, small cell base station 320 may be configured to include a backhaul-aware load management (BALM) component 324 operable to mitigate congestion on backhaul link 310. The operation of BALM component 324 may enable small cell base station 320 to determine various backhaul characteristics, for example, sustainable throughput, and corresponding delay and jitter variations, loss, etc., to identify backhaul congestion and/or take appropriate remedial actions. For example, in an aspect, when congestion is present, operation of BALM component 324 may enable small cell base station 320 via its radio resource management (RRM) module to offload one or more UEs 322 to a macro cell base station or otherwise reduce the coverage area of small cell base station 320 in order to reduce the number of UEs 322 being served. In an additional aspect, when congestion is present, operation of BALM component 324 may enable small cell base station 320 via its RRM module to offload one or more low throughput devices to a macro cell base station and/or reduce the coverage area of small cell base station 320 by lowering a pilot channel signal strength in order to reduce the number of UEs 322 being served. In an additional or optional aspect, operation of BALM component 324 may enable small cell base station 320 to limit the data rate of certain flows that are not backhaul-limited (e.g., by changing a video encoding rate). In a further additional or optional aspect, operation of BALM component 324 may enable small cell base station 320 to alert the user of one of the UEs 322 to enable the user of the UE to choose one of the above-noted actions and control the operation of the small cell. In an additional or optional aspect, the user of the UE may be alerted via a graphical user interface (GUI) to allow the user of the UE to choose one of the above-noted actions as described above.
Referring in more detail to
In an aspect, if it is determined that the existing throughput is not sufficient (‘no’ at decision 402), the small cell base station via operation of BALM component 324 checks whether it is over-the-air (OTA) capacity that is limiting the throughput (decision 404). If it is determined that the OTA capacity is limiting the throughput (‘yes’ at decision 404), the small cell base station via operation of BALM component 324 may take remedial actions to relieve the congestion on its air link, e.g., marking the UE as a candidate for handout to, e.g., a macro cell base station (block 406). In an alternate aspect, if it is not determined that it is the OTA capacity that is limiting the throughput (‘no’ at decision 404), the small cell base station via operation of BALM component 324 may perform a per-user rate shaping procedure to limit other users' throughput and determine if other UEs being served by the small cell base station are limiting backhaul throughput for the UE under consideration (decision 408). In an additional aspect, if it is determined that other UEs being served by the small cell base station are limiting the backhaul throughput (‘yes’ at decision 408), the small cell base station via operation of BALM component 324 may take remedial actions, e.g., marking the user equipment as a candidate for handout to a macro cell base station (block 406).
In an aspect, if it is determined that the other UEs being served by the small cell base station are not limiting the backhaul throughput (‘no’ at decision 408), the small cell base station via operation of BALM component 324 may perform a light active estimation procedure (for example, estimation of backhaul state using actively-induced packets with small overhead or naturally-induced/occurring packets whose statistical characteristics make them a good replacement for actively-induced packets for light active estimation, which are typically used to directly measure backhaul latency and loss) to determine if the Internet service provider (ISP) queue is fully utilized (decision 410). If it is determined that the ISP queue does not appear to be full (‘no’ at decision 410), there may be no backhaul capacity problem and the small cell base station via operation of BALM component 324 may revert to performing light passive estimation monitoring as appropriate, as described above. In an alternative aspect, if it is determined that the ISP queue does appear to be full (‘yes’ at decision 410), there may be a backhaul capacity problem and the small cell base station via operation of BALM component 324 may further perform a heavy active estimation procedure (e.g., estimation of backhaul state using actively-induced packets with potentially high overhead, or naturally-induced/occurring packets whose statistical characteristics make them a good replacement for actively-induced packets for heavy active estimation, which are typically used to directly measure throughput) to determine if the throughput is being limited by congestion at the Internet peer with which the UE is communicating, rather than by the backhaul link itself (decision 412).
In an aspect, if it is determined that throughput is not being limited by congestion at the Internet peer with which the UE is communicating (‘no’ at decision 412), the small cell base station via operation of BALM component 324 may determine that there is a backhaul capacity problem and may take remedial actions, e.g., marking the UE as a candidate for handout to a macro cell base station (block 406). In an alternative aspect, if it is determined that the throughput is being limited by congestion at the Internet peer with which the UE is communicating (‘no’ at decision 412), there may be no backhaul capacity problem and the small cell base station via operation of BALM component 324 may revert to performing light passive estimation monitoring as appropriate, as described above.
In an aspect, in order to optimize BALM component 324 and the different BALM related procedures in
In an aspect, at block 510, methodology 500 may include receiving an indication from a radio resource management (RRM) framework of a small cell base station. For example, in an aspect, BALM component 324 may be configured to receive an indication from a RRM framework of small cell base station 320. In an additional aspect, the indication received from the RRM framework may be related to a coverage problem at a UE (e.g., UE 322). For example, in an aspect, the coverage problem at UE 322 may be a radio frequency (RF) issue, e.g, poor RF coverage at the UE. RRM generally involves procedures or mechanism for controlling parameters such as transmit power, user allocation, beamforming, data rates, handover criteria, modulation scheme, error coding scheme, etc. at a base station (e.g., small cell base station or a macro cell base station).
In an additional aspect, coverage problems at the UE may be identified by the RRM of small cell base station 320 via a pre-emptive or a pro-active approach. For example, in an aspect, the RRM framework of small cell base station 320 may send a request to UE 322 to take measurements (e.g., RSRP, RSRQ, etc.) related to handover of UE 322 to another base station (e.g. to another small cell base station or a macro cell base station) without actually performing a handover. In an aspect, the RRM framework of small cell base station 320 may trigger base station 320 to send a request to UE 322 to perform the measurements when certain conditions are met, e.g., when the source cell (e.g., the cell UE 322 is camped on for service, which can be small cell base station 320) of UE 322 is experiencing poor RF conditions.
In an additional aspect, the RRM framework of small cell base station 320 may send a message (e.g., an explicit indication) to the small cell base station regarding coverage related problems at UE 322 based on the measurements received from the one or more UEs (e.g., one or more of UEs 322).
In an aspect, at block 520, methodology 500 may include modifying a backhaul estimation mechanism at the small cell base station for the UE based on the indication received from the RRM framework of the small cell base station. For example, in an aspect, small cell base station 320 and/or BALM component 324 may be configured to modify a backhaul estimation mechanism at small cell base station 320 based on the indication received from the RRM framework of small cell base station 320. The backhaul estimation at the small cell base station may be modified (e.g., changed, updated, revised, etc.) for an improved backhaul management at small cell base station 320.
In an optional aspect, at block 530, methodology 500 may include delaying or suspending the backhaul estimation mechanism for the UE based on the indication received from the RRM framework. For example, in an aspect, small cell 320 and/or BALM component 324 may be configured to delay the backhaul estimation mechanism at small cell base station 320 for UE 322 (e.g., one or more of UEs 322) based on the indication received from the RRM framework. In an additional or optional aspect, BALM component 324 and/or backhaul estimation mechanism modifier may be configured to suspend the backhaul estimation mechanism for the UE based on the indication received from the RRM framework.
In an aspect, small cell base station 320 and/or BALM component 324 may be configured to delay the backhaul estimation mechanism at the small cell base station in response to receiving an indication from the RRM framework based on results of a pro-active RF scan at the UE triggered by the small cell base station. For example, in an aspect, small cell base station 320 and/or BALM component 324 may be configured to delay the backhaul estimation mechanism at small cell base station 320 in response to receiving an indication from the RRM framework based on results of a pro-active RF scan at UE 322 triggered by small cell base station 320.
In an aspect, small cell base station 320 and/or BALM component 324 may be configured to delay the backhaul estimation mechanism at the small cell base station in response to receiving an indication from the RRM framework of the small cell base station that a previous handover attempt of the UE failed. For example, in an aspect, small cell base station 320 and/or BALM component 324 may be configured to delay the backhaul estimation mechanism at small cell base station 320 (e.g., for UE 322) in response to receiving an indication from the RRM framework of small cell base station 320 that a previous handout of UE 322 failed. For example, the previous handout attempt may have failed because the UE is not in a location where the UE can be handed off to a neighbor and/or the neighbors of small cell base station 320 are in an over-loaded condition. In an additional aspect, the previous handover attempt may have failed to another small cell base station or to a macro cell base station.
In an aspect, small cell base station 320 and/or BALM component 324 may be configured to delay the backhaul estimation mechanism at the small cell base station in response to receiving an indication from the RRM framework of the small cell base station that the UE is a fast moving UE. For example, in an aspect, small cell base station 320 and/or BALM component 324 may be configured to delay the backhaul estimation mechanism at small cell base station 320 (e.g., for UE 322) in response to receiving an indication from the RRM framework of small cell base station 320 that the UE is a fast moving UE.
The delaying of the backhaul estimation mechanism for fast moving UE may save resources at small cell base station 320 for other users as the UE may have moved out of the coverage area of small cell base station 320 by the time the backhaul estimation mechanism is complete. In an aspect, the network operator may define a threshold value for the UE speed to identify a fast moving UE (e.g., threshold value defined at 30 miles/hour to identify a fast moving UE). In an aspect, a parameter associated with delaying the handover of the UE may be re-configured (e.g., updated or modified) to delay the handout of the UE.
In an aspect, small cell base station 320 and/or BALM component 324 may be configured to delay the backhaul estimation mechanism at the small cell base station in response to receiving an indication from the RRM framework of the small cell base station that a handover over rate at the UE due to ping-pong effect is above a threshold, wherein the handover over rate at the UE due to ping-pong effect is determined from S1 Application Protocol (S1AP) UE History Information. For example, in an aspect, BALM component 324 may be configured to delay the backhaul estimation mechanism at small cell base station 320 (e.g., for UE 322) in response to receiving an indication from the RRM framework of small cell base station 320 that the UE is moving back and forth between small cell base stations at a rate (e.g., ping pong handover rate) which is above a threshold value.
For example, the backhaul estimation mechanism may be delayed to minimize or eliminate scenarios where the small cell base station is executing backhaul estimation mechanism for the UE when the UE is moving back-and-forth between cells. The small cell base station may not be able to take proper action on the UE in a timely manner as the UE may have been handed out to another base station by the time the small cell base stations is ready to take an action (e.g., perform a handover). In an additional aspect, the handover rate at UE 322 due to ping-pong effect may be determined from S1 Application Protocol (S1 AP) UE History Information available at small cell base station 320.
In an aspect, small cell base station 320 and/or BALM component 324 may be configured to suspend the backhaul estimation mechanism at the small cell base station in response to receiving an indication from the RRM framework of the small cell base station that a handover of the UE to another base station is not possible, wherein the other base station is a small cell base station or a macro cell base station. For example, in an aspect, BALM component 324 may be configured to suspend the backhaul estimation at the small cell base station 320 in response to receiving an indication from the RRM framework that a handover of UE 322 to another base station is not possible. For example, a handover of the UE may not be possible when UE 322 is camped on a small cell base station (e.g., small cell base station 320) and the cell the UE is camped on does not have any neighbors for performing a handover of UE 322. For example, this may happen in a scenario where small cell base station 320 is in a remote area and it does not have any neighboring base station for performing a handover of the UE. Alternatively, other neighboring base stations may be down (e.g., out of service) and/or there may be over-load conditions where the neighboring base stations cannot support additional UEs.
In an additional or optional aspect, small cell base station 320 and/or BALM component 324 may be configured to disable the backhaul estimation mechanism for a selected amount of time that may be defined by the network operator. In a further additional aspect, the same amount of selected amount of time may be used for both small cells and macro cells or different values may be used for small cell and macro cells as the macro cells typically cover a larger area. In an optional aspect, the macro cells may be configured to disable the backhaul estimation mechanism for a longer period (e.g., as compared to a small cell).
In an additional aspect, small cell base station 320 and/or BALM component 324 may be configured to resume the backhaul estimation at the UE after a selected amount of time. For example, in an aspect, BALM component 324 may be configured to resume the backhaul estimation at small cell base station (e.g., for UE 322) after a selected amount of time has passed as conditions typically change in a wireless network.
In an additional aspect, small cell base station 320 and/or BALM component 324 may be configured to delay or suspend the backhaul estimation mechanism taking into consideration handover, redirection, offload priority, etc. For example, small cell base station 320 and/or BALM component 324 can be configured to determine if estimation mechanism should be performed based on a score assigned to the likelihood, quality, and expense of providing service on the handover target cell, where the likelihood that the service is available may be dependent on UE subscription or capability on the considered target cell/network (e.g., another small cell vs same operator macro cell vs a roaming network). For example, in a potential handout scenario to a macro cell, the macro cell may not have a QoS for VoIP service that may result in service degradation. In such an aspect, the backhaul estimation mechanism may be suspended.
In an additional or optional aspect, the passive estimation, described in reference to
In general, the small cell base station 600 and/or BALM component 324 includes various components for providing and processing services for the client devices 640. For example, the small cell base station 600 may include a transceiver 612 for wireless communication with the one or more of the clients 640 and a backhaul controller 614 for backhaul communications with other network devices, such as the router 630. These components may operate under the direction of a processor 616 in conjunction with memory 618, for example, all of which may be interconnected via a bus 620 or the like.
In addition and in accordance with the discussion above, the small cell base station 600 and/or BALM component 324 may also further include a RRM indication receiver 622 for receiving an indication from a RRM framework of small cell base station 600, a backhaul estimation mechanism modifier 624 for modifying a backhaul estimation mechanism at small cell base station 600 for UE 322 based on the indication received from the RRM framework of small cell base station 600.
For example, in an aspect, RRM indication receiver 622 may be configured to receive an indication from RRM framework of small cell base station 600, wherein the indication received from the RRM framework is related to a coverage problem at a UE (e.g. UE 322), and wherein UE 322 is one a plurality of UEs in communication with small cell base station 600. In an additional aspect, backhaul estimation mechanism modifier 624 may be configured to modify a backhaul estimation mechanism at small cell base station 600 for UE 322 based on the indication received from the RRM framework of small cell base station 600. It will be appreciated that in some designs one or more or all of these operations may be performed by or in conjunction with the processor 616 and memory 618.
At the device 710, traffic data for a number of data streams is provided from a data source 712 to a transmit (TX) data processor 914. Each data stream may then be transmitted over a respective transmit antenna.
The TX data processor 714 formats, codes, and interleaves the traffic data for each data stream based on a particular coding scheme selected for that data stream to provide coded data. The coded data for each data stream may be multiplexed with pilot data using OFDM techniques. The pilot data is typically a known data pattern that is processed in a known manner and may be used at the receiver system to estimate the channel response. The multiplexed pilot and coded data for each data stream is then modulated (i.e., symbol mapped) based on a particular modulation scheme (e.g., BPSK, QSPK, M-PSK, or M-QAM) selected for that data stream to provide modulation symbols. The data rate, coding, and modulation for each data stream may be determined by instructions performed by a processor 730. A data memory 732 may store program code, data, and other information used by the processor 730 or other components of the device 710.
The modulation symbols for all data streams are then provided to a TX MIMO processor 720, which may further process the modulation symbols (e.g., for OFDM). The TX MIMO processor 720 then provides NT modulation symbol streams to NT transceivers (XCVR) 722A through 722T. In some aspects, the TX MIMO processor 720 applies beam-forming weights to the symbols of the data streams and to the antenna from which the symbol is being transmitted.
Each transceiver 722 receives and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to provide a modulated signal suitable for transmission over the MIMO channel. NT modulated signals from transceivers 722A through 722T are then transmitted from NT antennas 724A through 724T, respectively.
At the device 750, the transmitted modulated signals are received by NR antennas 752A through 752R and the received signal from each antenna 752 is provided to a respective transceiver (XCVR) 754A through 754R. Each transceiver 754 conditions (e.g., filters, amplifies, and down converts) a respective received signal, digitizes the conditioned signal to provide samples, and further processes the samples to provide a corresponding “received” symbol stream.
A receive (RX) data processor 760 then receives and processes the NR received symbol streams from NR transceivers 754 based on a particular receiver processing technique to provide NT “detected” symbol streams. The RX data processor 760 then demodulates, deinterleaves, and decodes each detected symbol stream to recover the traffic data for the data stream. The processing by the RX data processor 760 is complementary to that performed by the TX MIMO processor 720 and the TX data processor 714 at the device 710.
A processor 770 periodically determines which pre-coding matrix to use (discussed below). The processor 770 formulates a reverse link message comprising a matrix index portion and a rank value portion. A data memory 772 may store program code, data, and other information used by the processor 770 or other components of the device 750.
The reverse link message may comprise various types of information regarding the communication link and/or the received data stream. The reverse link message is then processed by a TX data processor 738, which also receives traffic data for a number of data streams from a data source 736, modulated by a modulator 780, conditioned by the transceivers 754A through 754R, and transmitted back to the device 710.
At the device 710, the modulated signals from the device 750 are received by the antennas 724, conditioned by the transceivers 722, demodulated by a demodulator (DEMOD) 740, and processed by a RX data processor 742 to extract the reverse link message transmitted by the device 750. The processor 730 then determines which pre-coding matrix to use for determining the beam-forming weights then processes the extracted message.
The functionality of the modules of
In addition, the components and functions represented by
In some aspects, an apparatus or any component of an apparatus may be configured to (or operable to or adapted to) provide functionality as taught herein. This may be achieved, for example: by manufacturing (e.g., fabricating) the apparatus or component so that it will provide the functionality; by programming the apparatus or component so that it will provide the functionality; or through the use of some other suitable implementation technique. As one example, an integrated circuit may be fabricated to provide the requisite functionality. As another example, an integrated circuit may be fabricated to support the requisite functionality and then configured (e.g., via programming) to provide the requisite functionality. As yet another example, a processor circuit may execute code to provide the requisite functionality.
Those of skill in the art will appreciate that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Further, those of skill in the art will appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the aspects disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The methods, sequences and/or algorithms described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
Accordingly, an aspect disclosed can include a computer readable media embodying a method for calibrating a small cell base station for management of a backhaul link to an ISP. Accordingly, the invention is not limited to illustrated examples and any means for performing the functionality described herein are included in aspects disclosed.
While the foregoing disclosure shows illustrative aspects disclosed, it should be noted that various changes and modifications could be made herein without departing from the scope of the invention as defined by the appended claims. The functions, steps and/or actions of the method claims in accordance with the aspects described herein need not be performed in any particular order. Furthermore, although elements disclosed may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.
In accordance with various aspects of the disclosure, an element, or any portion of an element, or any combination of elements may be implemented with a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, digital signal processors (DSPs), field programmable gate arrays (FPGAs), programmable logic devices (PLDs), state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on a computer-readable medium. The computer-readable medium may be a non-transitory computer-readable medium. A non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip), an optical disk (e.g., compact disk (CD), digital versatile disk (DVD)), a smart card, a flash memory device (e.g., card, stick, key drive), random access memory (RAM), read only memory (ROM), programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer.
The computer-readable medium may also include, by way of example, a carrier wave, a transmission line, and any other suitable medium for transmitting software and/or instructions that may be accessed and read by a computer. The computer-readable medium may be resident in the processing system, external to the processing system, or distributed across multiple entities including the processing system. The computer-readable medium may be embodied in a computer-program product. By way of example, a computer-program product may include a computer-readable medium in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system.
It is to be understood that the specific order or hierarchy of steps in the methods disclosed is an illustration of exemplary processes. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented unless specifically recited therein.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
The present application for patent claims priority to U.S. Provisional Application No. 61/933,732, filed Jan. 30, 2014, entitled “Method and Apparatus for an Improved Backhaul Estimation Mechanism at a Small Cell,” U.S. Provisional Application No. 61/897,061, filed Oct. 29, 2013, entitled “Backhaul Estimation for Small Cells—Calibration,” U.S. Provisional Application No. 61/897,064, filed Oct. 29, 2013, entitled “Backhaul Aware Load Management for Small Cells—Passive Estimation,” U.S. Provisional Application No. 61/897,069, filed Oct. 29, 2013, entitled “Backhaul Estimation for Small Cells—Light Active Estimation,” U.S. Provisional Application No. 61/897,114, filed Oct. 29, 2013, entitled “Method and Apparatus for Backhaul Congestion Estimation Using Heavy Active Probing for Small Cells,” U.S. Provisional Application No. 61/897,098, filed Oct. 29, 2013, entitled “Apparatus and Method for Off-Loading User Equipment from a Small Cell” all assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61933732 | Jan 2014 | US | |
61897061 | Oct 2013 | US | |
61897064 | Oct 2013 | US | |
61897069 | Oct 2013 | US | |
61897114 | Oct 2013 | US | |
61897098 | Oct 2013 | US |