This application claims the benefit of Taiwan application Serial No. 105120753, filed Jun. 30, 2016, the subject matter of which is incorporated herein by reference.
The invention relates to a backlight control and image compensation method applied to a display, and an associated control circuit.
To increase visual contrast and achieve power saving, for a region having a lower luminance in an image, some displays reduce the corresponding backlight intensity and compensate display data (i.e., a pixel value and/or a grayscale value) to allow a user to perceive the same luminance. Ideally, a visual effect of first reducing the backlight intensity and then compensating the display data is equivalent to a visual effect of without altering the backlight intensity and without compensating the display image. However, in some situations, when the backlight intensity is reduced, the compensation performed on the display data may exceed a maximum value allowed, such that the display data is clamped to the maximum luminance to cause loss in details of the image. For example, assuming that pixels having pixel values and/or grayscales 128 to 255 in the original display data are compensated to the pixel value and/or grayscale 255, not only details in the image become distorted but also the contrast of the image is reduced.
It is an object of the present invention to provide a backlight control and image compensation method applied to a display and an associated control circuit to solve issues of distorted details and reduced contrast of an image in the prior art.
According to an embodiment of the present invention, a control circuit of a display includes a statistics circuit, a backlight determining circuit and a backlight control circuit. The display includes a backlight module, which has a maximum power. The statistics circuit receives a frame, and generates luminance statistical information of a plurality of blocks included in the frame. The backlight determining circuit determines a backlight intensity corresponding to each of the blocks according to the luminance statistical information of the blocks and the maximum power. At least one of the backlight intensities corresponding to the blocks is greater than a normal luminance, which is a backlight intensity corresponding to one of the blocks when the maximum power is evenly distributed on light emitting elements of the display. The backlight control circuit controls the luminance of the backlight module according to the backlight intensities.
According to another embodiment of the present invention, a backlight control and image compensation method applied to a display is provided. The display includes a backlight module formed by a plurality of light emitting elements, and has a maximum power. The method includes: receiving a frame, and generating luminance statistical information of a plurality of blocks included in the frame; determining a backlight intensity corresponding to each of the blocks according to luminance statistical information of the blocks and the maximum power, wherein at least one of the backlight intensities corresponding to the blocks is greater than a normal luminance that is a backlight intensity corresponding to one of the blocks when the maximum power is evenly distributed on the light emitting elements; and controlling the backlight module according to the backlight intensities.
The above and other aspects of the invention will become better understood with regard to the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.
In an operation of the control circuit 100, the statistics circuit 110 receives image data of a frame, and calculates luminance statistical information of the frame and luminance statistical information of a plurality of blocks included in the frame. For example, the frame may be divided into M*N blocks, each of which at least corresponding to one light emitting element of the backlight module. The statistics circuit 110 calculates an average luminances of all pixel in the frame, a standard deviation of luminances of all pixels in the frame, an average luminance of all pixels in each of the blocks, and a standard deviation of luminances of all pixels in each of the blocks.
According to the luminance statistical information calculated by the statistics circuit 110, the backlight determining circuit 120 determines a backlight intensity of each of the blocks. A range of the backlight intensity of each of the blocks determined includes a maximum luminance that the corresponding turned-on light emitting element is capable of providing. The maximum luminance is higher than a normal luminance that the corresponding light emitting element of each of the blocks is capable of providing when all of the light emitting elements of the display are lit up. More specifically, a common light emitting element has a luminance range. Taking a light emitting diode (LED) controlled by a pulse-width modulation (PWM) signal for example, when a duty cycle of the PWM signal is 60%, the LED is allowed to present an extremum luminance. However, due to a power limitation of the backlight module or other factors, it is impossible for all of the LEDs present the extremum luminance at the same time. Thus, when all of the LEDs of backlight module of a common display are lit up, the duty cycle of the associated PWM signal may reach only 30% at most to control the illumination of the LEDs. The normal luminance is the backlight intensity corresponding to one of the blocks when the maximum power (the power limit) is evenly distributed on the LEDs; the maximum luminance is the greatest luminance that a driven LED of one block is capable of providing without considering the power limit. In the embodiment, the backlight intensity range that by the backlight determining circuit 12 for each of the blocks, instead of being lower than or equal to the normal luminance (e.g., corresponding to 0% to 30% of the duty cycle of the PWM signal) in the prior art, may include the maximum luminance (e.g., corresponding to 0% to 60% of the duty cycle of the PWM signal).
Next, the backlight control circuit 130 generates a corresponding backlight control signal according to the backlight intensity of each block determined by the backlight determining circuit 120 to control the luminance of each LED in the backlight module of the display.
Meanwhile, in response to the adjustment in the backlight, the luminance of image data also needs to be adjusted to allow a user to perceive the same visual effect. Thus, the luminance compensation gain calculating circuit 140 determines a compensation gain value for each of the pixels according to the luminance value of each of the pixels in the frame, the luminance statistical information of each of the blocks in the frame and the backlight intensity of each of the blocks in the frame. Next, the luminance compensating circuit 150 multiples the luminance value of each of the pixels in the frame by the corresponding compensation gain value to obtain an adjusted luminance value, and provides the adjusted luminance value as the display data to the panel for display. The luminance compensating circuit 150 may be implemented by a multiplier.
The gain determining circuit 320 determines the gain value for each of the blocks according to the luminance statistical information of the frame. For example, referring to
In one embodiment, the first threshold TH1 is a sum of the average pixel luminance of the frame and a standard deviation of the pixel luminance of the frame; the second threshold TH2 is a difference between the average pixel luminance of the frame and the standard deviation of the pixel luminance of the frame. The present invention is not limited to the above example.
The adjusting circuit 330 generates the adjusted backlight intensity of each of the blocks according to the initial backlight intensity of each of the blocks and the gain value. Further, the adjusting circuit 330 may be implemented by a multiplier. Thus, the range of the backlight intensity of each of the blocks corresponds to 0% to 60% of the duty cycle of the PWM signal, i.e., achieving the foregoing maximum luminance.
Operations of the preliminary estimation circuit 310, the gain determining circuit 320 and the adjusting circuit 330 are performed in a unit of a block. To prevent the overall power consumption from exceeding the limitation of the backlight module, the power protection circuit 340 determines the backlight intensity to be outputted to each block of the backlight control circuit 130 according to the adjusted backlight intensity of each block and a maximum power (a power limit).
Referring to
In this embodiment, the power down-scaling ratio SR is determined according to the maximum power (i.e., the power limit) that the backlight module allows and a total power corresponding to the adjusted backlight intensities of the blocks. For example, the power down-scaling ratio SR may be calculated by: SR=1−(P_total−PC)/sum(boosting), where P_total is the total power when the backlight module uses the adjusted backlight intensities, PC is the power limit of the backlight module, and sum(boosting) is the sum of differences between the respective adjusted backlight and the respective initial backlight intensities of the blocks.
Through the embodiment in
Next, the first mapping table 620 determines a total compensation gain value for each of the blocks according to the total backlight intensity that each of the blocks receives from the backlight module, and the second mapping table 630 determines a non-total compensation gain value for each of the blocks according to the total backlight intensity that each of the blocks receives from the backlight module. More specifically,
In the embodiment, when the total backlight intensity of a block is lower than a normal luminance, the curves of the first mapping table 620 and the second mapping table 630 are identical; when the total backlight intensity of a block is higher than the normal luminance, the gain value (Gain2) generated by the second mapping table 630 is higher than the gain value (Gain1) generated by the first mapping table 620.
It should be noted that, the first mapping table 620 and the second mapping table 630 in
Gain: Gain=α*Gain2+(1−α)*Gain1
For example,
In one embodiment, for example but not limited to, the third threshold TH3 is a sum of an average image luminance of a block where the pixel is located and a standard deviation of the image luminance of the block, and the fourth threshold TH4 is a difference between the average image luminance of the block and the standard deviation of image luminance of the block.
The luminance compensating circuit 150 multiplies the luminance value of the pixel by the corresponding compensation gain value to obtain the adjusted luminance value, and displays the adjusted luminance value on the display.
Through the above operation, for a block having a higher backlight intensity, the luminance value of a pixel originally having a higher luminance is increased to further enhance the contrast of the image.
In step 900, the process begins.
In step 902, image data of a frame is received, and luminance statistical information of a plurality of blocks included in the frame is calculated.
In step 904, a backlight intensity of each of the blocks is calculated according to the luminance statistical information of the blocks. A range of the determined backlight intensity of each of the blocks includes a maximum luminance that a corresponding turned-on light emitting element is capable of providing. The maximum luminance is higher than a normal luminance that the light emitting elements of each block is capable of providing when all of the light emitting elements of the display are lit up.
In step 906, a backlight intensity of a backlight module of the display is controlled according to the determined backlight intensity of each block.
In step 908, a compensation gain value is determined for each of the pixels in the image data of the frame according to the luminance value of each pixel in the image data, the luminance statistical information of the blocks included in the frame, and the backlight intensity of each of the blocks.
In step 910, the luminance value of each of the pixels in the image data of the frame is multiplied by the corresponding compensation gain value to obtain the adjusted luminance value, and the pixels are displayed according to the adjusted luminance values.
In summary, in the backlight control and image compensation method applied to a display and the associated control circuit of the present invention, under the premise that the backlight module satisfies the power limit, a part of the light emitting elements are driven by a larger power, such that some of the blocks having higher luminances may appear brighter to further enhance the contrast of the overall image. Further, for a block having a high luminance, a non-total compensation may be performed on the corresponding display data, such that the pixels originally having high luminances in the block having a high luminance may appear brighter to further enhance the contrast. Thus, the backlight intensity of a block having a luminance may be significantly increased, and the backlight emitted from the block having a high luminance may relatively reduce the luminance requirement of a block having a low luminance, thereby achieving effects of focused light patterns and enhancing the contrast as well as eliminating/alleviating the issue of distorted details in an image.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
105120753 A | Jun 2016 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
20080068328 | Jou | Mar 2008 | A1 |
20110122057 | Kim | May 2011 | A1 |
20130071034 | Kunkel | Mar 2013 | A1 |
20140307011 | Ninan | Oct 2014 | A1 |
20150070376 | Fujine et al. | Mar 2015 | A1 |
20160093243 | Su | Mar 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20180005599 A1 | Jan 2018 | US |