The present disclosure relates to a backlight module and more particularly, to a display device with a backlight module.
A liquid crystal display (LCD) does not emit light and hence requires a backlight for its function as a visual display. Recently, Light Emitting Diodes (LEDs) have been employed as light sources for backlighting LCDs. However, the LED's color gamut is not so good, the backlight module and the display device exist the problem that the color gamut and transmittance of light are not high, thereby reducing the display effect.
In an exemplary embodiment, a backlight module includes an emitting element, phosphors, and a quantum dot film. The emitting element is configured to provide a light with a first primary color. The phosphors have a second primary color. The quantum dot film includes numbers of quantum dots configured to provide an emission spectrum with a third primary color. The light from the emitting element excites the phosphors and the quantum dot film to generate white light.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.
The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series and the like.
In order to achieve high color gamut of light from the backlight module and the display device, there is providing a backlight module and a display device. The backlight module includes a light guide plate, a blue light emitting diode chip disposed beside the light guide plate, and a quantum dot film with red and green emission spectra that is disposed above the light guide plate. The blue light from the blue light emitting diode chip is provided to the quantum dot film through the light guide plate. The blue light excites the quantum dot film to generate the red light and the green light, and white mixed light is formed according to the blue light, the red light, and the green light. However, due to the quantum dot film has the red and green emission spectra, which means there are two different sizes red quantum dots and green quantum dots therein. Therefore, the process of manufacturing the quantum dot film is complicated, and the thickness of the quantum dot film is large, which causes that the thickness of the backlight module and the display device are reduced difficulty and the brightness of the backlight module and the display device are also decreased.
In order to achieve high color gamut of light from a backlight module and a display device and reducing the thickness of the backlight module, there is providing a backlight module and a display device. The backlight module includes blue light emitting diode chip and red phosphors and green phosphors. The red phosphors and the green phosphors are covering the blue light emitting diode chip. The blue light excites the red phosphors and the green phosphors to generate white light. However, in this case, the intensity and the brightness of the backlight module also need to be enhanced.
In order to achieve high color gamut of light from a backlight module and a display device and reducing the thickness of the backlight module, there is providing a backlight module and a display device. The backlight module includes an emitting element, phosphors, and a quantum dot film. The emitting element is configured to provide light with a first primary color. The phosphors have a second primary color. The quantum dot film includes numbers of quantum dots configured to provide emission spectrum with a third primary color. The lights from the emitting element stimulate the phosphors and the quantum dot film to generate white mixed light. That is, the backlight module emits white light by the light from the emitting element stimulating the phosphors and the quantum dot film. The quantum dots have the characteristics of good light stability and long fluorescence lifetime, which increases the color gamut of lights from the backlight module and the display device. These features also satisfy the requirement for the light sources of the backlight module, and the display effect can be improved. Furthermore, the size of each quantum dots required in the quantum dot film can be the same, and the thickness of the whole backlight module with the quantum dot film is decreased. Thin quantum dot film has high transmittance such that the intensity and the brightness of the backlight module are enhanced. In at least one embodiment, the first primary color is blue, the second primary color is red, and the third primary color is green.
In order to achieve high color gamut of light from a display device and reducing the thickness of a backlight module, there is providing a display device. The display device includes a display panel, an emitting element, phosphors, and a quantum dot film. The emitting element is configured to provide lights with a first primary color. The phosphors have a second primary color. The quantum dot film includes numbers of quantum dots configured to provide emission spectrum with a third primary color. The lights from the emitting element stimulate the phosphors and the quantum dot film to generate white mixed light, providing to the display panel for display. The quantum dots have the characteristics of good light stability and long fluorescence lifetime, which increases the color gamut of lights from the backlight module and the display device. These features also satisfy the requirement for the light sources of the backlight module, and the display effect can be improved. Furthermore, the size of each quantum dots required in the quantum dot film can be the same, and the thickness of the whole backlight module with the quantum dot film is decreased. Thin quantum dot film has high transmittance such that the intensity and the brightness of the backlight module are enhanced.
The light guide plate 130 has a light incident surface 131, a light emitting surface 132 adjacent to the light incident surface 131, and a bottom surface 133 opposite to the light emitting surface 132. The light source 140 is disposed beside the light incident surface 131, the quantum dot film 150 is disposed beside the light emitting surface 132, and the reflector 170 is disposed beside the bottom surface 133. The optical film 160 is disposed beside the quantum dot film 150 away from the light guide plate 130 and sandwiched between the quantum dot film 150 and the display panel 110.
The mixed light of the first primary color and the second primary color emitting from the light source 140 passes through the light incident surface 131 into the light guide plate 130 and leaves the light guide plate 130 through the light emitting surface 132, outwardly emitting. The mixed light emitting from the light emitting surface 132 of the light guide plate 130 is provided to the quantum dot film 150. The reflector 170 reflects light leaking from the bottom of the light guide plate 130 back to the light guide plate 130.
The quantum dot film 150 has a plurality of quantum dots, providing light of third primary color emission spectrum. The mixed light mentioned above further excites the quantum dot film 150 to generate white light. The first primary color, the second primary color, and the third primary color are different, each respectively a monochrome color. In at least one embodiment, the third primary color may be green. In other words, the quantum dot film 150 has a plurality of quantum dots 151 with green emission spectrum. Preferably, the size of the quantum dots 151 in the quantum dot film 150 is the same, which means, the quantum dots 151 in the quantum dot film 150 has only one size (has only one emission spectrum). Particularly, the size (diameter) of the quantum dots 151 is in the range of 2.5 nm to 3 nm, and the material thereof comprises CdSe or ZnO. The mixed light emitting from the light emitting surface 132 of the light guide plate 130 is provided to the quantum dot film 150. Some of the mixed lights excite the quantum dots 151 to generate lights with the third primary color, and other of the mixed lights remix with the lights with third primary color to generate white light which is emitting outwardly from the quantum dot film 150. A white plan light is provided to the display panel 110 from the quantum dot film 150 through an optical film.
The optical film 160 may be a diffuser or a brightness enhancement film. In at least one embodiment, the optical film may not be required. The white plane light from the quantum dot film 150 may directly emit toward the display panel 110.
The backlight module 120 generates white light by the light of the emitting element 141 exciting the phosphors 143 and the quantum dot film 150. Due to the quantum dots 151 have the characteristics of good light stability and long fluorescence lifetime that increasing the color gamut of lights from the backlight module 120 and enhancing the color gamut of lights of the backlight module 120 and the display device 100 (shown in
In the fourth embodiment, blue lights from the emitting element 441 through the green phosphors 443 to generate mixed light of blue light and green light. The mixed light of blue light and green light passes through the light guide plate 430 and be providing to the quantum dot film 450. Parts of the mixed lights of blue light and green light stimulate the quantum dots 451 to generate red light. The other of the mixed lights of blue light and green light mix with the red light to generate white light emitting from the quantum dot film 450. The quantum dot film 450 may provide planar white light through the optical film 460 toward the display device 410. As shown in
The embodiments shown and described above are only examples. Many details are often found in the art such as the other features of a backlight module or a display device. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, especially in matters of shape, size and arrangement of the parts within the principles of the present disclosure up to, and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
103121479 | Jun 2014 | TW | national |