The invention relates to a backlight module and, more particularly, relates to an illumination device thereof.
Conventionally, backlight modules are disposed at the rear of display panels in liquid crystal displays (LCDs), providing backlight to the display panels. Backlight modules are normally direct type or side-light type, comprising a light source such as a cold cathode fluorescent lamps (CCFLs). The direct backlight module comprises a plurality of lamps with luminous flux increased by increasing the number of lamps. Thus, the direct backlight module is mostly utilized in a large-sized LCD, providing required light intensity.
The weight and thickness of the LCDs, however, increase accordingly. Since compact LCDs are currently popular, the conventional backlight module is not suitable. Side-light modules comprise a light source disposed at an edge of the module and requires a light guide plate for uniform distribution. Thus, the side-light module is more suitable for a small LCD. The light intensity emitted from the edge thereof, however, is less.
The weight of a CCFL increases with the number of lamps. Thus, another type of light source such as light emitting diodes (LEDs) replaces the CCFL for reduced weight, providing increased light intensity and lifetime. The light path of LEDs, however, is linear within a small light emitting range. Thus, a large number of LEDs must be utilized together to provide sufficient light intensity. If the arrangement and relative position of each LED varies slightly, the color of the light can be changed and light intensity reduced accordingly.
As shown in
As described, the conventional backlight module 1 has a problem in that the light emitted by the LED travels in a linear direction. That is, most of the light is emitted in the panel direction. Thus, the light is not uniformly distributed. The light intensity difference between the light source 14 and the reflective plate 13 is high, causing uneven image intensity. To solve the problem, more light sources are required and must be compactly arranged such that the weight and manufacturing costs are increased, as well as temperature in the backlight module.
A side emitting type LED 14′ solves the problem of the linear light path, as shown in
Embodiments of the present invention provide an illumination device eliminating the shortcomings described with a simplified structure and lowered cost.
Also provided is an illumination device comprising a light source and a lens disposed over the light source with a predetermined gap therebetween. The lens comprises a bottom surface as an incident surface, a pair of upper refracting surfaces, and a pair of lateral refracting surfaces. The upper refracting surfaces form an included angle substantially in a range of about 80° to about 120°.
The upper refracting surfaces and the incident surface form two acute angles. The two acute angles are substantially in a range of about 30° to about 50°. The incident surface and the lateral refracting surfaces form two obtuse angles are substantially in a range of about 100° to about 115°.
In an embodiment, the lateral cross section of the lens is substantially V-shaped.
Note that the refracting index of the lens is substantially in a range of about 1.49 to about 1.51. The predetermined gap is substantially less than about 10 mm. Preferably, the predetermined gap is substantially in a range of about 0 mm to about 2 mm. The lens comprises polymer materials, quartz, or glass. The polymer materials comprise polymethylmethacrylate (PMMA), polystyrene (PS), or polycarbonate (PC).
The light source comprises a Lamberation-type LED or a cold cathode fluorescent lamp.
Embodiments of the present invention further provide a backlight module comprising a frame, a reflective plate, at least one light source, and a lens. The reflective plate is disposed in the frame. The light source is disposed over the reflective plate. The lens, disposed over the light source with a predetermined gap therebetween, comprises a bottom surface as an incident surface, a pair of upper refracting surfaces, and a pair of lateral refracting surfaces. The upper refracting surfaces form an included angle substantially in a range of about 80° to about 120°.
The light source can be linearly, alternately, or irregularly arranged or arranged in array.
When the light source is linearly arranged, the frame comprises at least one positioning member, disposed on a sidewall of the frame and fixing the lens in the frame. The positioning member is adapted to accommodate the lens. In another embodiment, the positioning member comprises a screw.
When the light source is arranged in array or alternately or irregularly arranged, the backlight module further comprises a supporting member, disposed between the reflective plate and the lens and supporting the lens over the light source.
Embodiments of the present invention can be more fully understood by reading the subsequent detailed description in conjunction with the examples and references made to the accompanying drawings, wherein:
In another embodiment, the predetermined gap G1 is substantially in a range of about 0 mm to about 2 mm.
The lens 52 comprises an incident surface 52a, a pair of upper refracting surfaces 52b, and a pair of lateral refracting surfaces 52c. The incident surface 52a is a bottom surface of the lens 52. The upper refracting surfaces 52b are upper surfaces of the lens 52. The lateral refracting surfaces 52c are located at the sides of the lens 52. The incident surface 52a, one of the upper refracting surfaces 52b, and one of the lateral refracting surfaces 52c form a substantially triangular shape. The lens 52 is formed by two triangles. The upper refracting surfaces 52b form an included angle θ1. The included angle θ1 is substantially in a range of about 80° to about 120°. The upper refracting surfaces 52b and the incident surface 52a form two acute angles β1. The acute angles β1 are substantially in a range of about 30° to about 50°. The incident surface 52a and the lateral refracting surfaces 52c form two obtuse angles γ1. The two obtuse angles γ1 are substantially in a range of about 100° to about 115°.
In this embodiment, the lateral cross section of the lens 52 is substantially V-shaped.
When light from the light source 51 is emitted toward the lens 52, the light penetrates the incident surface 52a, as shown by the dashed arrow. A portion of the light passes through the upper refracting surfaces 52b, respectively, and is refracted toward the lateral refracting surfaces 52c. Thus, light is emitted in all directions around the lens 52, and is uniformly distributed. The light intensity difference between the light source and the reflective plate is significantly reduced such that image intensity is uniform. The simplified structure of the backlight module presents lower costs. Since light is uniformly emitted, the number of the light sources can be minimized, and the size thereof can be as compact as possible.
In a variation of the embodiment, as shown in
Note that the shape of the lens 52 can be different in different embodiments. For example, in a variation, as shown in
While two lens shapes are disclosed, the present invention does not limit the shape of the lens, which can be triangular, quadrilateral, trapeziform, trapezoidal shape, or a combination thereof. The cross section of the lens can be substantially V-shaped.
When the lens 52′ is longitudinal, as shown in
In conclusion, the lens of the present invention produces light in different light paths such that a portion of the light is emitted in lateral directions. Thus, light is uniformly distributed while reducing the number of required elements, thereby reducing manufacturing costs.
While the present invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the present invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
94100376 A | Jan 2005 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4025780 | Krase et al. | May 1977 | A |
4143394 | Schoberl | Mar 1979 | A |
4703405 | Lewin | Oct 1987 | A |
4984144 | Cobb et al. | Jan 1991 | A |
6354709 | Campbell et al. | Mar 2002 | B1 |
6361190 | McDermott | Mar 2002 | B1 |
6439731 | Johnson et al. | Aug 2002 | B1 |
6607286 | West et al. | Aug 2003 | B2 |
6666569 | Obata | Dec 2003 | B2 |
6674096 | Sommers | Jan 2004 | B2 |
6679621 | West et al. | Jan 2004 | B2 |
6724543 | Chinniah et al. | Apr 2004 | B1 |
7004610 | Yamashita et al. | Feb 2006 | B2 |
7083313 | Smith | Aug 2006 | B2 |
7142769 | Hsieh et al. | Nov 2006 | B2 |
7153002 | Kim et al. | Dec 2006 | B2 |
7254309 | Chou et al. | Aug 2007 | B1 |
7319244 | Liu et al. | Jan 2008 | B2 |
20040130882 | Hara et al. | Jul 2004 | A1 |
20050185391 | Lee et al. | Aug 2005 | A1 |
20060067078 | Beeson et al. | Mar 2006 | A1 |
20060076568 | Keller et al. | Apr 2006 | A1 |
20060081863 | Kim et al. | Apr 2006 | A1 |
20060104080 | Kim et al. | May 2006 | A1 |
20060208267 | Chin et al. | Sep 2006 | A1 |
20060273337 | Han et al. | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
1486818 | Dec 2004 | EP |
Number | Date | Country | |
---|---|---|---|
20060274547 A1 | Dec 2006 | US |