The present application claims benefit of Chinese patent application CN 201510263233.5, entitled “Backlight Module and Liquid Crystal Display Device” and filed on May 21, 2015, the entirety of which is incorporated herein by reference.
The present disclosure relates to the technical field of liquid crystal display, and particularly to a backlight module and a liquid crystal display device comprising the backlight module.
Quantum dot is a new fluorescent material that can convert light emitted by a Light-Emitting Diode (LED) or other light source into light with a required color. For example, CdSe quantum dot with a diameter of 2 nm can emit blue light in visible spectrum, while CdSe quantum dot with a diameter of 10 nm can emit red light in visible spectrum. The emission spectrum of quantum dot has a centralized spectrum and a pure color. In general, quantum dot can be mixed with a suitable chemical material so as to form liquid. Then, the liquid can be packaged in a glass tube, so that a quantum tube that can emit fluorescence can be manufactured.
In the prior art, fluorescence that is generated by fluorescent powder generally serves as backlight. However, the color of the backlight is not pure, and thus the display quality of the display device is poor. Therefore, it is desirable to use the quantum tube as a backlight module of a liquid crystal display device.
With respect to the aforesaid technical problem, the present disclosure provides a backlight module. According to the present disclosure, a quantum tube can be supported by the backlight module firmly and thus can be used in a liquid crystal display device. The present disclosure further provides a liquid crystal display device comprising the backlight module.
According to a first aspect, the present disclosure provides a backlight module. The backlight module comprises a frame, which comprises a first extension part and a second extension part that are parallel to each other, and a connection part that is connected between the first extension part and the second extension part, wherein a light source is arranged on an inner side of the connection part; and wherein a quantum tube that can receive light from the light source is provided between an inner end of the first extension part and an inner end of the second extension part.
In the backlight module according to the present disclosure, the quantum tube is arranged in front of the light source. Therefore, the light that is emitted by the light source can illuminate the quantum tube. That is, the quantum tube can receive the light from the light source and then emit fluorescence with a required color. The fluorescence that is emitted by the quantum tube can illuminate an inner side of the backlight module. Thus, when the backlight module is used in a liquid crystal display device, the liquid crystal display device is actually illuminated by the quantum tube.
According to one embodiment, the light source and the quantum tube are arranged parallel to each other. In this case, all regions of the quantum tube can receive light in a uniform manner, and thus can emit fluorescence uniformly.
According to one embodiment, the backlight module further comprises a first barrier wall corresponding to the inner end of the first extension part and a second barrier wall corresponding to the inner end of the second extension part, wherein a first carrying region is formed between the inner end of the first extension part and the first barrier wall, and a second carrying region is formed between the inner end of the second extension part and the second barrier wall; and wherein two ends of the quantum tube are disposed in the first carrying region and the second carrying region respectively. The quantum tube is made of a glass tube and can be broken very easily. Therefore, through arranging the first carrying region and the second carrying region in the backlight module, and installing the two ends of the quantum tube in the two carrying regions, the quantum tube can be fixed and protected effectively, and can be prevented from sliding in the backlight module or even falling out from the backlight module. Moreover, since a distance between the quantum tube and the light source is determined by a length of the first extension part and a length of the second extension part, the first extension part and the second extension part can both be configured with a relatively small length so as to shorten the distance between the quantum tube and the light source. In this manner, not only the light-emitting efficiency of the quantum tube can be improved, but also the liquid crystal display device can be configured with a narrower frame.
According to one embodiment, a width of the first carrying region and a width of the second carrying region both are larger than or equal to a length of a non light-emitting region of a corresponding end of the quantum tube. In the prior art, the two ends of the quantum tube cannot emit light. In the structure according to the present disclosure, the non light-emitting regions of the quantum tube serve as the installing parts thereof. In this manner, the adverse influence of the non light-emitting regions of the quantum tube on the display quality of the liquid crystal display device can be avoided.
According to one embodiment, the backlight module further comprises a plurality of barrier walls that are arranged between the first barrier wall and the second barrier wall and are used for carrying the quantum tube, and the plurality of barrier walls are parallel to the first barrier wall or the second barrier wall. These additional barrier walls can also play the role of supporting the quantum tube. In large sized backlight module or liquid crystal display device, these additional barrier walls are necessary for reducing the load of the first barrier wall and the second barrier wall and improving the stability of the quantum tube. Moreover, these additional barrier walls can prevent the quantum tube from being broken in a middle part thereof.
According to one embodiment, the first barrier wall, the second barrier wall, and the frame are integrated into one piece. The assembling procedure of the backlight module can be greatly simplified through using the frame with this structure. In addition, a positional error between the first barrier wall and the second barrier wall generated by the assembling procedure can be avoided.
According to one embodiment, the backlight module further comprises a quantum tube supporter that extends from the first carrying region to the second carrying region, wherein the quantum tube is affixed to the quantum tube supporter. The quantum tube supporter can also play the roles of supporting and protecting the quantum tube, so that the quantum tube can be prevent from being broken in a middle part thereof.
According to one embodiment, a thickness of the quantum tube supporter is less than a height of the light source on the connection part. In this case, the light that is emitted by the light source cannot be shielded by the quantum tube supporter, and thus the light-emitting efficiency of the quantum tube can be improved.
According to one embodiment, the quantum tube supporter and the frame are integrated into one piece. The assembling procedure of the backlight module can also be greatly simplified with this arrangement.
According to a second aspect, the present disclosure further provides a liquid crystal display device. The liquid crystal display device comprises a light guide plate and the aforesaid backlight module, wherein the backlight module is arranged at an end of the light guide plate.
According to the present disclosure, “inner” refers to a direction facing an internal part of the liquid crystal display device, while “outer” refers to a direction facing an external part of the liquid crystal display device.
Compared with the prior art, the following advantages can be brought about according to the present disclosure. On the one hand, in the backlight module according to the present disclosure, the quantum tube is arranged in front of the light source. Therefore, the quantum tube can receive the light that is emitted by the light source and can emit fluorescence, whereby the inner side of the backlight module can be illuminated and thus the liquid crystal display device can be illuminated. In this manner, the display quality of the liquid crystal display device can be improved. On the other hand, according to the present disclosure, the quantum tube can be arranged in the backlight module by the frame firmly, and moreover, the frame of the liquid crystal display device can be configured relatively narrow.
The present disclosure will be illustrated in detail hereinafter with reference to the embodiments and the drawings. In the drawings:
In the drawings, a same component is represented by a same reference sign. The drawings are not drawn according to actual scale.
The present disclosure will be further illustrated hereinafter with reference to the drawings.
In order to improve the display quality of the liquid crystal display device, according to the present disclosure, a quantum tube serves as the backlight module 1.
As shown in
The light source 9 is installed on an inner side 11 of the connection part 8, and the quantum tube 10 is installed in front of the light source 9 along a direction facing the inner side. In this case, the quantum tube 10 can receive the light that is emitted by the light source 9, and the light that is emitted by the quantum tube 10 still faces the inner side (a direction of an arrow A as shown in
In order to hold the quantum tube 10 in the backlight module 1 firmly, the backlight module 1 is provided with a first barrier wall 12 and a second barrier wall (not shown in
A width L of the first carrying region 14 and a width of the second carrying region both are configured larger than or equal to a length of a non light-emitting region of a corresponding end of the quantum tube 10. That is, the non light-emitting regions at the two ends of the quantum tube 10 each are completely shielded by the first barrier wall 12 or the second barrier wall, so that the adverse influence of the non light-emitting regions of the quantum tube on the display quality of the liquid crystal display device can be avoided. Preferably, in order to utilize the quantum tube 10 more effectively, the width L of the first carrying region 14 and the width of the second carrying region both are configured equal to the length of the non light-emitting region of the corresponding end of the quantum tube 10. In this manner, the non light-emitting regions of the quantum tube 10 can exactly serve as the installing parts thereof, and thus the light that is emitted by the quantum tube 10 can be utilized fully.
Preferably, the backlight module 1 can further comprise a plurality of barrier walls 20 and 21 that are arranged between the first barrier wall 12 and the second barrier wall. These barrier walls 20 and 21 are also used for carrying the quantum tube 10. In large sized liquid crystal display device, the quantum tube 10 generally has a large length and a large weight. In this case, the barrier walls 20 and 21 can effectively reduce the pressure of the first barrier wall 12 and the second barrier wall, and can prevent the quantum tube 10 from being broken in a middle part thereof. It can be understood that, the widths of the barrier walls 20 and 21 should be selected as small as possible, so that the light that is emitted by the quantum tube 10 would not be shielded by the barrier walls 20 and 21.
It can be understood that, the first barrier wall 12, the second barrier wall, and the frame 4 are integrated into one piece, and the barrier walls 20 and 21 as well as the frame 4 are also integrated into one piece. In this manner, the assembling of the backlight module 1 can be simplified.
As shown in
The present disclosure is illustrated in detail in combination with preferred embodiments hereinabove, but it can be understood that the embodiments disclosed herein can be improved or substituted without departing from the protection scope of the present disclosure. In particular, as long as there are no structural conflicts, the technical features disclosed in each and every embodiment of the present disclosure can be combined with one another in any way, and the combined features formed thereby are within the protection scope of the present disclosure. The present disclosure is not limited by the specific embodiments disclosed herein, but includes all technical solutions falling into the protection scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0263233 | May 2015 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2015/081806 | 6/18/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/183894 | 11/24/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9110204 | Nakamura | Aug 2015 | B2 |
20110089809 | Noh | Apr 2011 | A1 |
20120307518 | Lee | Dec 2012 | A1 |
20130050612 | Hur | Feb 2013 | A1 |
20140286049 | Cha et al. | Sep 2014 | A1 |
20150103291 | Li | Apr 2015 | A1 |
20150226904 | Bae | Aug 2015 | A1 |
20150234111 | Lee | Aug 2015 | A1 |
20150355400 | Li | Dec 2015 | A1 |
20150369993 | Kim | Dec 2015 | A1 |
20160018583 | Lee | Jan 2016 | A1 |
20160070056 | He | Mar 2016 | A1 |
20160238779 | Li | Aug 2016 | A1 |
20160245975 | Li | Aug 2016 | A1 |
20160306100 | Chen | Oct 2016 | A1 |
20160341874 | Fan | Nov 2016 | A1 |
20170003442 | Chen | Jan 2017 | A1 |
20170102494 | Que | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
102281341 | Dec 2011 | CN |
102966884 | Mar 2013 | CN |
103681990 | Mar 2014 | CN |
103775923 | May 2014 | CN |
103885243 | Jun 2014 | CN |
204227219 | Mar 2015 | CN |
104820311 | Aug 2015 | CN |
102004044358 | Mar 2006 | DE |
20130024152 | Mar 2013 | KR |
Entry |
---|
Search Report and Written Opinion, dated Feb. 25, 2016, for International Application No. PCT/CN2015/081805. |
Office Action and Search Report, dated May 2, 2017, for Chinese Patent Application No. 201510263233.5. |
Number | Date | Country | |
---|---|---|---|
20180120635 A1 | May 2018 | US |