BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a backlight module for reducing interference, in particular to a backlight module with phase control unit, capable of reducing the interference caused by electric leakage.
2. Description of the Related Art
Cathode Ray Tube (CRT) had been the mainstream in the monitor industry and market for a long time because of its excellent image quality and lower cost. However, along with the price of liquid crystal display being dropped to a reasonable level, its shortages, such as huge volume as well as larger energy consuming, have made CRT be replaced by LCD. The liquid crystal molecules in LCD will not radiate so that the backlight module is required to provide the light source to get sufficient lightness and contrast for revealing the image.
Please refer to FIG. 1A and FIG. 1B, respectively showing the backlight module of the prior art and the driving power source chart of each lamp in the prior art. The lamps L1˜Ln in the backlight module of the prior art are driven by the driving power sources provided by the corresponding inverter D1˜Dn, and the lamps L1˜Ln are under high-voltage starting and high-voltage operating mold. Although between the high voltage terminals of lamps L1˜Ln and the backlight module exist high impedances C1˜Cn, the high-voltage operating in lamps L1˜Ln causes the backlight module carrying out electric leakage all the time thus resulting in leakage charges accumulating in the backlight module. Further, the ground terminal of the liquid crystal driving substrate is coupled to the backlight module, so the electric leakage will also cause the ground terminal of the liquid crystal driving substrate sustaining the high voltage effect to become unstable thus interfering with the frame of the display. As shown in FIG. 1A, the driving power source A1 drives L1, A2 drives L2, and An drives Ln. Because each driving power source, i.e. A1˜An, is an alternating current (AC) voltage with the same phase as seen in FIG. 1B, which shows the driving power sources A1˜An, the electric leakage will be induced to generate the effect of multiple at each time point, causing that the largest electric leakage occurs at time point (T1) and the smallest electric leakage occurs at (T2) thus generating the phenomenon of ripples and interfering the frame of display. Therefore, the present invention provides a backlight module for reducing the interference that carries out phase shifting of each driving power source so as to get the effect of reducing interference.
SUMMARY OF THE INVENTION
It is a primary object of the present invention to provide a backlight module for reducing interference, which can adjust the phase of each driving power source to reduce the interference caused by electric leakage.
To attain the aforesaid object, the present invention provides a backlight module for reducing interference. The backlight module includes: a plurality of radiating unit, a plurality of transferring units, and a phase control unit. Each transferring unit is connected to a corresponding radiating unit and can provide a driving power source for driving the radiating unit. The phase control unit is connected to the plural transferring units and enables the plural driving power sources to differ from one another by an appropriate phase angle successively.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A shows a conventional backlight module.
FIG. 1B shows the driving power source chart of each lamp according to prior arts.
FIG. 2A shows a preferred embodiment of the backlight module according to the present invention.
FIG. 2B shows the driving power source chart of each radiating unit according to the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Matched with corresponding drawings, the preferable embodiments of the invention are presented as following and hope they will benefit your esteemed reviewing committee members in reviewing this patent application favorably.
As shown in FIG. 2A, which shows the preferred embodiment of the backlight module according to the present invention. The backlight module comprises: a plurality of radiating units, i.e. X1˜Xn, a plurality of transferring units 11, and phase control unit 12. In the preferred embodiment, there are N radiating units and N transferring units where N is an integer number. The plural transferring units 11 are respectively connected to the plural radiating units X1˜Xn, and can provide N sets of driving power sources B1˜Bn to drive the N radiating units X1˜Xn. The transferring unit 11 is a DC/AC inverter for providing high driving power source thus driving the N radiating unit X1˜Xn. Each radiating unit has a first illuminant 101 and a second illuminant 102, and each driving power source has a first voltage and a second voltage for driving the first illuminant 101 and the second illuminant 102 simultaneously. In addition, the first voltage and the second voltage differ from each other by a phase angle 180° so that the operating voltages of the first illuminant 101 and the second illuminant 102 are reversed at the same time. In this preferred embodiment, the first illuminant 101 and the second illuminant 102 can be a Cold Cathode Fluorescent Lamp (CCFL) or an External Electrode Fluorescent Lamp (EEFL). The phase control unit 12 is connected to the N transferring units 11 and has N phase shifters 121, a frequency multiplier 122, and a processor 123. The N phase shifters 121 are respectively connected to the N transferring units 11, and these N phase shifters 121 are coupled to the processor 123. The frequency multiplier 122 is connected to the first of the N phase shifters 121.
When the backlight module activates, the processor 123 can get a phase angle using a calculating rule, wherein the steps of calculating rule is as following: multiplying an operating frequency by 2, where the operating frequency is the frequency of the first or the second driving power source, using the frequency multiplier 122; and dividing the doubled operating frequency by the amount of the radiating units X1˜Xn, that is the number N, so as to obtain the phase angle. Each phase shifter 121 differs from the adjacent one by the phase angle and all the phase shifters 121 provide the control signals respectively to the N transferring units 11 so that the driving power sources of the adjacent transferring units 11 will get a phase shift of the said phase angle. Thus, when the N radiating units X1˜Xn are respectively driven by the driving power sources B1˜Bn with the different phases at the same time as seen in FIG. 2B, which shows the driving power source B1˜Bn. For example, the driving power source B2 of the second radiating unit X2 differs from the driving power source B1 of the first radiating unit X1 with the said phase angle and the driving power source B3 of the third radiating unit X3 differs from the driving power source B2 of the second radiating unit X2 with the same said phase angle, such that the N transferring units 11 will not provide the highest voltage to the N radiating units X1˜Xn at the same time point (T3) and thus can prevent the electric leakage of the N radiating units X1˜Xn from reaching the highest value at the same time point (T3). The present invention takes the action of carrying out phase shift of the driving power source B1˜Bn to disperse the highest electric leakage of each radiating unit so that the value of electric leakage will be reduced at each time point thus diminishing the interference caused by the driving power source.
However, from the structural characteristics and detailed disclosure of each embodiment according to the invention, it sufficiently shows that the invention has progressiveness of deep implementation in both objective and function, also has the application value in industry, and it is an application never seen ever in current market and, according to the spirit of patent law, the invention is completely fulfilled the essential requirement of new typed patent.