The invention relates to a backlight module.
The information disclosed in this “BACKGROUND OF THE INVENTION” section is only for enhancement understanding of the background of the described technology, and therefore it may contain information that does not form the prior art that is already known to a person of ordinary skill in the art. Furthermore, the information disclosed in this “BACKGROUND OF THE INVENTION” section does not mean that one or more problems to be solved by one or more embodiments of the invention were acknowledged by a person of ordinary skill in the art.
The invention provides a backlight module having a dynamic dimming mechanism.
Other objects and advantages of the invention may be further illustrated by the technical features broadly embodied and described as follows.
In order to achieve one or a portion of or all of the objects or other objects, one embodiment of the invention provides a backlight module including a light guide plate, a plurality of light transmission elements and a light source. The light guide plate has at least one light incident surface, and the light transmission elements are disposed near the light incident surface and aligned to from at least one light transmission element row. The light source is disposed near one end of the light transmission element row and capable of emitting a light beam to the light transmission element row. Each of the light transmission elements reflects a part of the light beam to the light guide plate to than multiple independent light reflection paths, and the plurality of light transmission elements successively transmits a part of the light beam to form a light transmission path in the light transmission element row. At least one of the plurality of light transmission elements is allowed to optionally leave the light transmission path and not to form a light reflection path corresponding to the at least one light transmission element.
Another embodiment of the invention provides a backlight module including a light guide plate, a plurality of first light transmission elements, a plurality of second light transmission elements, a first light source and a second light source. The light guide plate has a first side surface, a second side surface opposite the first side surface, a third side surface, a fourth side surface opposite the third side surface, and the third side surface and the fourth side surface are located between the first side surface and the second side surface. The first light transmission elements are disposed near the first side surface and aligned to form at least one first light transmission element row, and the second light transmission elements are disposed near the third side surface and aligned to form at least one second light transmission element row. The first light source is disposed near one end of the first transmission element row and capable of emitting a light beam to the first transmission element row, each of the first light transmission elements reflects a part of the light beam to the light guide plate to form multiple independent first reflection light paths, and the first light transmission elements successively transmits a part of the light beam starting from a first light transmission element nearest the first light source. The second light source is disposed near one end of the second transmission element row and capable of emitting a light beam to the second transmission element row. Each of the second light transmission elements reflects a part of the light beam to the light guide plate to form multiple independent second reflection light paths, and the second light transmission elements successively transmitting a part of the light beam starting from a second light transmission element nearest the second light source. The first reflection light paths cross the second reflection light paths, and at least one of the first and the second light transmission elements is allowed to be switched between a first mode of reflecting and a second mode of not reflecting the part of the light beam.
According to the above embodiments, only a single piece of a light source is needed to spread light over the entire light guide plate to reduce fabrication costs. Besides, a laser light source may be used to cooperate with the light transmission elements to lower power consumption, and the feature of high beam directionality of a laser light source may enhance light scattering efficiency and display color saturation. Further, at least one light transmission element is allowed to optionally leave the light transmission path and not to form a light reflection path corresponding to that light transmission element, thus achieving dynamic dimming in real time. In addition, the light transmission elements may be disposed near two different sides of the light guide plate to provide a two-dimensional dynamic dimming mechanism and thus achieve more finely dynamic dimming effects.
Other objectives, features and advantages of the invention will be further understood from the further technological features disclosed by the embodiments of the invention wherein there are shown and described preferred embodiments of this invention, simply by way of illustration of modes best suited to carry out the invention.
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” etc., is used with reference to the orientation of the Figure(s) being described. The components of the invention can be positioned in a number of different orientations. As such, the directional terminology is used for purposes of illustration and is in no way limiting. On the other hand, the drawings are only schematic and the sizes of components may be exaggerated for clarity. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the invention. Also, it is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. Similarly, the terms “facing,” “faces” and variations thereof herein are used broadly and encompass direct and indirect facing, and “adjacent to” and variations thereof herein are used broadly and encompass directly and indirectly “adjacent to”. Therefore, the description of “A” component facing “B” component herein may contain the situations that “A” component directly faces “B” component or one or more additional components are between “A” component and “B” component. Also, the description of “A” component “adjacent to” “B” component herein may contain the situations that “A” component is directly “adjacent to” “B” component or one or more additional components are between “A” component and “B” component. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
Note the arrangement of the light transmission elements 16 relative to the light guide plate 12 is not limited. For example, the light transmission elements 16 may be integrally formed on the light guide plate 12 (shown in
The light transmission elements are not limited to be disposed near only one side of the light guide plate. As shown in
Further, the light transmission element according to the above embodiments is not limited to a specific structure, as long as the effect of reflecting and transmitting a light beam to travel along a determined light path is achieved. For example, as shown in
According to the above embodiments, only a single piece of a light source is needed to spread light over the entire light guide plate to reduce fabrication costs. Besides, a laser light source may be used to cooperate with the light transmission elements to lower power consumption, and the feature of high beam directionality of a laser light source may enhance light scattering efficiency and display color saturation. Further, at least one light transmission element is allowed to optionally leave the light transmission path and not to form a light reflection path corresponding to that light transmission element, thus achieving dynamic dimming in real time. In addition, the light transmission elements may be disposed near two different sides of the light guide plate to provide a two-dimensional dynamic dimming mechanism and thus achieve more finely dynamic dimming effects.
The foregoing description of the preferred embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form or to exemplary embodiments disclosed. Accordingly, the foregoing description should be regarded as illustrative rather than restrictive. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. The embodiments are chosen and described in order to best explain the principles of the invention and its best mode practical application, thereby to enable persons skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use or implementation contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents in which all terms are meant in their broadest reasonable sense unless otherwise indicated. Therefore, the term “the invention”, “the present invention” or the like does not necessarily limit the claim scope to a specific embodiment, and the reference to particularly preferred exemplary embodiments of the invention does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is limited only by the spirit and scope of the appended claims. Moreover, these claims may refer to use “first”, “second”, etc. following with noun or element. Such terms should be understood as a nomenclature and should not be construed as giving the limitation on the number of the elements modified by such nomenclature unless specific number has been given. The abstract of the disclosure is provided to comply with the rules requiring an abstract, which will allow a searcher to quickly ascertain the subject matter of the technical disclosure of any patent issued from this disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Any advantages and benefits described may not apply to all embodiments of the invention. It should be appreciated that variations may be made in the embodiments described by persons skilled in the art without departing from the scope of the invention as defined by the following claims. Moreover, no element and component in the present disclosure is intended to be dedicated to the public regardless of whether the element or component is explicitly recited in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
105213576 U | Sep 2016 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
20150234231 | Kawada | Aug 2015 | A1 |
20150260899 | Cheol | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
104090424 | Oct 2014 | CN |
205080339 | Mar 2016 | CN |
Number | Date | Country | |
---|---|---|---|
20180067362 A1 | Mar 2018 | US |