1. Technical Field
The present disclosure relates to a backlight protection circuit.
2. Description of Related Art
In order to display an image, liquid crystals in a liquid crystal display (LCD) panel, require illumination from a light source such as a backlight module. A common backlight module includes a plurality of lamps and a pulse modulator which controls the operation of the lamps. When one of the lamps functions abnormally, the pulse modulator is adjusted to protect itself or the lamp.
A backlight protection circuit of the common backlight module uses high voltage end feedback circuits connected to outputs of driving circuits of the backlight protection circuit to provide over-voltage protection to the lamps. When operating in a high voltage environment, the elements in the high voltage end feedback circuits can wear out easily, reducing the reliability of the high voltage end feedback circuits, and thus reducing the reliability of the backlight protection circuit.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of at least one embodiment. In the drawings, like reference numerals designate corresponding parts throughout the various views.
The pulse modulator 210 is a pulse modulation chip, such as model OZ9938, OZ9939, for example. The pulse modulator 210 includes a current sampling end 211, a voltage sampling end 212, a pulse sampling end 213, an output end 214, a first comparator 215, a second comparator 216 and two filtering capacitors C1. The current sampling end 211 receives the current feedback signal of the current feedback circuit 240. A voltage of the current feedback signal is defined as Vif. The voltage sampling end 212 is used to receive the over-voltage feedback signal of the over-voltage feedback circuit 250. A voltage of the over-voltage feedback signal is defined as Vvf. The pulse sampling end 213 is used to detect the pulse signal of the pulse feedback circuit 260. The output end 214 is used to output control pulses to the driving circuit 220. The first comparator 215 includes a first signal end 2151 and a first reference end 2152. The first signal end 2151 is connected to the current sampling end 211, and is grounded through a filtering capacitor C1. The first reference end 2152 is connected to a first reference voltage Vref1. The second comparator 216 includes a second signal end 2161 and a second reference end 2162. The second signal end 2161 is connected to the voltage sampling end 212, and is grounded through a filtering capacitor C1. The second reference end 2162 is connected to a second reference voltage Vref2.
The driving circuit 220 includes a switch circuit 221 and a transformer 222. The switch circuit 221 receives control pulses output from the output end 214 of the pulse modulator 210 so as to cause the transformer 222 to generate an AC voltage. The AC voltage generated by the transformer 222 changes with the frequency or duty cycle of the control pulses. The transformer 222 includes a primary winding 223 and two secondary windings 224. The number of turns of the two secondary windings 224 are the same. The primary winding 223 and the two secondary windings 224 are wound in the same direction. The effective voltages of the two secondary windings 224 are Vo.
The lamp set 230 includes a first lamp 231, a second lamp 232, a third lamp 233, a fourth lamp 234 and four protecting resistors R0. The first lamp 231 and the third lamp 233 are connected in series through a secondary winding 224. The second lamp 232 and the fourth lamp 234 are connected in series through another secondary winding 224. The first lamp 231 and the fourth lamp 234 are connected to the same transformer terminals of the two secondary windings 224. The first lamp 231 and the second lamp 232 are connected to different transformer terminals of the two secondary windings 224. That is, the phases of the loaded driving voltages of the first lamp 231 and the second lamp 232 are opposite to each other. In this embodiment, the end of each lamp connected to the secondary winding 224 is defined as the high voltage end of the lamp; the other end is defined as the low voltage end of the lamp. The low voltage end of each lamp is grounded through a protecting resistor R0. To maintain normal operation of the lamp set 230, the allowable lowest effective voltage output by the driving circuit 220 is Vol, and the highest allowable effective voltage output by the driving circuit 220 is Voh. That is, to maintain normal operation of the lamp set 230, the effective voltage Vo output by the secondary winding 224 must exceed the allowable lowest effective voltage Vol, and be lower than the highest allowable effective voltage Voh. The allowable lowest effective voltage Vol and the highest allowable effective voltage Voh correspond to the first and second reference voltages Vref1 and Vref2 respectively. Corresponding to the allowable lowest effective voltage Vol output by the driving circuit 220, the low voltage end of each lamp has a lower voltage limit V1. Corresponding to the highest allowable effective voltage Voh output by the driving circuit 220, the low voltage end of each lamp has a higher voltage limit Vh.
The backlight protection circuit 200 further includes a first diode D1 and a second diode D2. An anode of the first diode D1 is connected to the low voltage end of the first lamp 231 through a first node 201. An anode of the second diode D2 is connected to the low voltage end of the second lamp 232 through a second node 202. A cathode of the first diode D1 is connected to a cathode of the second diode D2 through a third node 203.
The current feedback circuit 240 includes a first voltage dividing resistor R1, a second voltage dividing resistor R2 and a first output end 241. The first output end 241 is connected to the third node 203 through the first voltage dividing resistor R1, and is grounded through the second voltage dividing resistor R2. The first output end 241 is connected to the current sampling end 211, to output the current feedback signal to the current sampling end 211.
The over-voltage feedback circuit 250 includes a third voltage dividing resistor R3, a fourth voltage dividing resistor R4 and a second output end 251. The second output end 251 is connected to the third node 203 through the third voltage dividing resistor R3, and is grounded through the fourth voltage dividing resistor R4. The second output end 251 is connected to the voltage sampling end 212, to output the over-voltage feedback signal to the voltage sampling end 212.
The pulse feedback circuit 260 includes a fifth voltage dividing resistor R5, a sixth voltage dividing resistor R6, a seventh voltage dividing resistor R7, a coupling capacitor C2, a third diode D3, a fourth diode D4 and a third output end 261. The first node 201 is grounded through the fifth voltage dividing resistor R5 and the seventh voltage dividing resistor R7. The second node 202 is connected to the fifth voltage dividing resistor R5 and the seventh voltage dividing resistor R7 through the sixth voltage dividing resistor R6. Between the fifth voltage dividing resistor R5 and the seventh voltage dividing resistor R7 is a fourth node 204. The fourth node 204 is connected to an anode of the third diode D3 through the coupling capacitor C2. A cathode of the third diode D3 is connected to the pulse sampling end 213 through the third output end 261. An anode of the fourth diode D4 is grounded. A cathode of the fourth diode D4 is connected to the anode of the third diode D3. The fifth voltage dividing resistor R5 and the sixth voltage dividing resistor R6 have the same resistance.
The voltage Vif of the current feedback signal is changed after it is filtered by the filtering capacitor C1 connected to the current sampling end 211. The voltage of the feedback signal received by the first comparator 215 is defined as V1. Similarly the voltage Vvf of the over-voltage feedback signal is changed after it is filtered by the filtering capacitor C1 connected to the voltage sampling end 212. The voltage of the feedback signal received by the second comparator 216 is defined as V2.
In the backlight protection circuit 200, when the voltage V1 is lower than the first reference voltage Vref1, the pulse modulator 210 gradually changes the duty cycle of control pulses output at the output end 214 so as to increase the AC voltage output by the driving circuit 220 until the voltage V1 is no longer lower than the first reference voltage Vref1. When the voltage V2 exceeds the second reference voltage Vref2, or when the pulse sampling end 203 receives the pulse signal, the pulse modulator 210 stops control pulses from the output end 214 and latches the pulse modulator 210.
Operation of the backlight protection circuit 200 follows.
The unidirectional electric current property of a diode turns the diode on when the anode voltage exceeds its cathode voltage. If the voltage drops across the first and second diodes D1 and D2 are ignored, the voltage at the first node 201 and the voltage at the second node 202 cause the voltage at the third node 203 to have the waveform shown in
Because the resistance of the fifth voltage dividing resistor R5 and the resistance of the sixth voltage dividing resistor R6 are the same, the voltages at the first node 201 and the second node 202 have the same magnitude but opposite polarity. Thus the voltage at the fourth node 204 is zero. The third diode D3 is turned off, and the third output end 261 has no signal output.
When an abnormal situation occurs in the backlight protection circuit 200, such as the output voltage Vo of the transformer 222 being too high, above the highest allowable effective voltage Voh, leaving the lamp in the lamp set 230 in danger of being burned out, the voltages Vr0 of the low voltage ends of the first and second lamps 231 and 232 both rise to exceed the higher voltage limit Vh of the low voltage ends of the first and second lamps 231 and 232 to increase the voltage Vvs of the second signal end 2161 to be above the second reference voltage Vref2 so as to control the pulse modulator 210 to stop outputting pulses thereby stopping the transformer 222 from outputting a high AC voltage.
When the output voltage Vo of the transformer 222 is too low, below the allowable lowest effective voltage Vol, causing the lamp in the lamp set 230 unable to emit sufficient light, the voltages Vr0 of the low voltage ends of the first and second lamps 231 and 232 both drop to below the lower voltage limit V1 of the low voltage ends of the first and second lamps 231 and 232 to reduce the voltage Vis of the first signal end 2151 to be below the first reference voltage Vref1 so as to control the pulse modulator 210 to adjust the duty cycle of its output pulses thereby increasing the high AC voltage Vo output by the transformer 222 and causing the lamp in the lamp set 230 to emit sufficient light.
When the first lamp 231 is removed or open circuits, the voltage Vr0 at the low voltage end of the first lamp 231 becomes zero because the low voltage end of the first lamp 231 is grounded through the protecting resistor R0. That is, the voltage of the first node 201 becomes zero.
When the third lamp 233 is removed or open circuits, the voltages imposed on the first lamp 231 and the third lamp 233 are both imposed on the first lamp 231. Thus the voltage at the high voltage end of the first lamp 231 doubles, making the voltage at the first node 201 about 2Vro·sin(2πft). Because the fifth and sixth voltage dividing resistors R5 and R6 have the same resistance, the voltage at the fourth node 204 is about R7·Vro·sin(2πft)/(R5+R7), the same as when the second lamp 232 is removed or open circuits. Then, the pulse sampling end 213 of the pulse modulator 210 receives the pulse signal from the third output end 261, and the pulse modulator 210 directs its output end 214 to stop control pulses to stop the transformer 222 from outputting AC voltage. Similarly, when the fourth lamp 234 is removed or open circuits, the pulse modulator 210 stops outputting control pulses to stop the transformer 222 from outputting the AC voltage.
As can be seen, when any lamp of lamp set 230 open circuits, the voltage at the first node 201 or the second node 202 becomes abnormal. The pulse sampling end 213 of the pulse modulator 210 receives the pulse signal which stops the pulse modulator 210 from outputting control pulses. Further, when taking the voltage drop of the third diode D3 into consideration, by selecting appropriate resistance for the resistors R5, R6 and R7, the difference between the current of the first lamp 231 and the current of the second lamp 232 can be kept within a predetermined range. When the difference between the current of the first lamp 231 and the current of the second lamp 232 falls outside the predetermined range, the pulse modulator 210 stops outputting control pulses.
In addition to the abnormal situations described, when a strong current pulse (e.g., a power surge) passes through one of the lamps of the lamp set 230, such as during a power surge, the fourth node 204 of the backlight protection circuit 200 experiences a high frequency pulse.
The over-voltage feedback circuit 250 of the backlight protection circuit 200 is connected to the low voltage ends of the lamps of the lamp set 230 through the first diode D1, thus the elements of the over-voltage feedback circuit 250 do not wear easily, increasing the reliability of, specifically, the over-voltage feedback circuit 250, and, commensurately, the backlight protection circuit 200.
Further, the backlight protection circuit 200 has fewer elements, simpler structure, lower cost and lower power consumption. The over-voltage feedback circuit 250 of the backlight protection circuit 200 is connected to the low voltage ends of the lamps of the lamp set 230. Because the low voltage ends of the lamps of the lamp set 230 have less voltage fluctuation, the current in the lamps is more stable and precise. Due to their known imprecision, the over-voltage feedback circuit 250 does not use any capacitive elements, increasing the precision of the over-voltage feedback signal. All of the feedback circuits of the backlight protection circuit 200 are connected to the low voltage ends of the lamps of the lamp set 230, thus all of the feedback circuits of the backlight protection circuit 200 can be integrated to an integrated circuit, simplifying the backlight protection circuit 200. Because the pulse feedback circuit 260 of the backlight protection circuit 200 generates the feedback pulse signal, the backlight protection circuit 200 is able to provide open circuit protection, balance the current flowing through the lamps, and prevent damage from lightening or other electrical outages.
In another embodiment, the anode of the third diode D3 can be connected to the third output end 261, the cathode of the third diode D3 can be connected to the coupling capacitor C2, the cathode of the fourth diode D4 can be connected to ground, and the anode of the fourth diode D4 can be connected to the cathode of the third diode D3. To serve the purpose of the present disclosure, the backlight protection circuit 200 does not need to include the current feedback circuit 240 and the pulse feedback circuit 260. Also in another embodiment, the backlight protection circuit 200 does not need to include the over-voltage feedback circuit 250 and the pulse feedback circuit 260. Further in yet another embodiment, the backlight protection circuit 200 can only include the driving circuit 220, the lamp set 230 and a modulation integrated circuit. The modulation integrated circuit includes the pulse modulator 210, current feedback circuit 240, over-voltage feedback circuit 250, pulse feedback circuit 260, first diode D1, second diode D2, first node 201 and second node 202. The first node 201 and second node 202 are input ports of the modulation integrated circuit. The output end 214 of the pulse modulator 210 is an output port of the modulation integrated circuit.
It is to be understood that even though numerous characteristics and advantages of the present embodiments have been set forth in the foregoing description with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes made in detail, especially in matters of shape, size, and arrangement of parts, within the principles of the embodiments, to the fill extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0068335 | Jul 2008 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4168453 | Gerhard et al. | Sep 1979 | A |
5729096 | Liu et al. | Mar 1998 | A |
7291991 | Chen | Nov 2007 | B2 |
7291992 | Miyazaki | Nov 2007 | B2 |
7372213 | Kuo et al. | May 2008 | B2 |
7372214 | Song et al. | May 2008 | B2 |
7564194 | Jang et al. | Jul 2009 | B2 |
20060290453 | Park et al. | Dec 2006 | A1 |
20070171684 | Fukumoto | Jul 2007 | A1 |
20080088257 | Zhou et al. | Apr 2008 | A1 |
20080180038 | Wang et al. | Jul 2008 | A1 |
20080252231 | Huang et al. | Oct 2008 | A1 |
20090009097 | Li et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
1972546 | May 2007 | CN |
Number | Date | Country | |
---|---|---|---|
20100001651 A1 | Jan 2010 | US |