This disclosure relates generally to display devices, and more specifically to backlight units for illuminating pixels of display devices.
Display devices can use backlight units to emit light into a display area for viewing media content. Backlight units in devices such as personal computers or display monitors use side firing lights. For example, a computer monitor may have LED strips at the top and bottom or left and right of the rectangular display area. Side firing lights can cause nonuniform light distribution across a display area. For example, placing side firing light strips with different numbers of light sources on either side creates a nonuniform light distribution. When the length of a side firing light strip is similar to the length of an existing display area at which the strip is positioned, the side firing lights may illuminate the display area without consuming unnecessary space. However, illuminating display areas of devices where the length of the existing display area is shorter than the light strip can cause the lights to inefficiently occupy additional space. This can be disadvantageous when size or weight constraints are critical. For similar reasons, side firing lights may limit the shape of a display device to have a length in one dimension (i.e., the dimension in which the strip is positioned) that is unnecessarily long. Thus, side firing lights can also restrict the shape of display devices.
A display device improves illumination uniformity and form factor for a backlight unit (BLU). The display device includes a display area having pixels and a BLU at a back side of the display area. The BLU is configured to direct light to the pixels. The BLU includes a diffusion plate with a top side, a bottom side, and a right side connecting the top side and the bottom side, and a left side at an opposite side of the right side and connecting the top side and the bottom side. The BLU includes light sources located at one or more of the left and right sides of the diffusion plate to emit light into the diffusion plate. The left and right sides may include slanted portions connecting center portions of the left and right sides to the top and bottom sides. Light sources may be located at the slanted portions.
In some embodiments, the right side has a center portion perpendicular to the top side or the bottom side. The right side may further include a first slanted portion connecting the center portion and the top side. A first subset of the light sources can be placed to emit light into the first slanted portion.
In some embodiments, the right side further has a second slanted portion connecting the center portion and the bottom side, where a second subset of the light sources is placed to emit light into the second slanted portion.
In some embodiments, the first subset of the light sources is oriented in two or more directions.
In some embodiments, the display device can further include a display driver IC (DDIC) located at a back side of the BLU, where the back side faces away from the display area (i.e., a direction away from the direction light is traveling to a user’s eyes).
In some embodiments, the display device can further include a BLU driver configured to modify an amount of light emitted by one or more light sources of the BLU.
In some embodiments, the positions of the one or more light sources are asymmetric about a line bisecting the diffusion plate.
In some embodiments, the light sources are light-emitting diodes (LEDs).
In some embodiments, the same number of light sources are located at the first slanted portion and the second slanted portion.
In some embodiments, the display area is included within a head mounted display (HMD).
Other aspects include components, devices, systems, improvements, methods, processes, applications, computer readable mediums, and other technologies related to any of the above.
The figures depict various embodiments for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein.
In the following description of embodiments, numerous specific details are set forth in order to provide more thorough understanding. However, note that the embodiments may be practiced without one or more of these specific details. In other instances, features have not been described in detail to avoid unnecessarily complicating the description.
Embodiments relate to a display device with a backlight unit (BLU) that emits light at various locations around a surface area of a diffusion plate. In particular, light sources of the BLU are located at slanted portions of sides of the diffusion plate (e.g., corners of the diffusion plate). This may result in a greater backlight uniformity. Additionally, light sources of the BLU may be selectively dimmed using a driver that can modify the light intensity of a subset of the light sources. This may result in a local dimming capability that can improve contrast and reduce power consumption.
Embodiments of the invention may include or be implemented in conjunction with an artificial reality system. Artificial reality is a form of reality that has been adjusted in some manner before presentation to a user, which may include, e.g., a virtual reality (VR), an augmented reality (AR), a mixed reality (MR), a hybrid reality, or some combination and/or derivatives thereof. Artificial reality content may include completely generated content or generated content combined with captured (e.g., real-world) content. The artificial reality content may include video, audio, haptic feedback, or some combination thereof, any of which may be presented in a single channel or in multiple channels (such as stereo video that produces a three-dimensional effect to the viewer). Additionally, in some embodiments, artificial reality may also be associated with applications, products, accessories, services, or some combination thereof, that are used to create content in an artificial reality and/or are otherwise used in an artificial reality. The artificial reality system that provides the artificial reality content may be implemented on various platforms, including a wearable device (e.g., headset) connected to a host computer system, a standalone wearable device (e.g., headset), a mobile device or computing system, or any other hardware platform capable of providing artificial reality content to one or more viewers.
The frame 110 holds the other components of the headset 100. The frame 110 includes a front part that holds the one or more display elements 120 and end pieces (e.g., temples) to attach to a head of the user. The front part of the frame 110 bridges the top of a nose of the user. The length of the end pieces may be adjustable (e.g., adjustable temple length) to fit different users. The end pieces may also include a portion that curls behind the ear of the user (e.g., temple tip, ear piece).
The one or more display elements 120 provide light to a user wearing the headset 100. As illustrated the headset includes a display element 120 for each eye of a user. In some embodiments, a display element 120 generates image light that is provided to an eyebox of the headset 100. The eyebox is a location in space that an eye of user occupies while wearing the headset 100. For example, a display element 120 may be a waveguide display. A waveguide display includes a light source (e.g., a two-dimensional source, one or more line sources, one or more point sources, etc.) and one or more waveguides. Light from the light source is in-coupled into the one or more waveguides which outputs the light in a manner such that there is pupil replication in an eyebox of the headset 100. In-coupling and/or outcoupling of light from the one or more waveguides may be done using one or more diffraction gratings. In some embodiments, the waveguide display includes a scanning element (e.g., waveguide, mirror, etc.) that scans light from the light source as it is in-coupled into the one or more waveguides. Note that in some embodiments, one or both of the display elements 120 are opaque and do not transmit light from a local area around the headset 100. The local area is the area surrounding the headset 100. For example, the local area may be a room that a user wearing the headset 100 is inside, or the user wearing the headset 100 may be outside and the local area is an outside area. In this context, the headset 100 generates VR content. Alternatively, in some embodiments, one or both of the display elements 120 are at least partially transparent, such that light from the local area may be combined with light from the one or more display elements to produce AR and/or MR content.
In some embodiments, a display element 120 does not generate image light, and instead is a lens that transmits light from the local area to the eyebox. For example, one or both of the display elements 120 may be a lens without correction (non-prescription) or a prescription lens (e.g., single vision, bifocal and trifocal, or progressive) to help correct for defects in a user’s eyesight. In some embodiments, the display element 120 may be polarized and/or tinted to protect the user’s eyes from the sun.
In some embodiments, the display element 120 may include an additional optics block (not shown). The optics block may include one or more optical elements (e.g., lens, Fresnel lens, etc.) that direct light from the display element 120 to the eyebox. The optics block may, e.g., correct for aberrations in some or all of the image content, magnify some or all of the image, or some combination thereof.
The DCA determines depth information for a portion of a local area surrounding the headset 100. The DCA includes one or more imaging devices 130 and a DCA controller (not shown in
The DCA controller computes depth information for the portion of the local area using the captured images and one or more depth determination techniques. The depth determination technique may be, e.g., direct time-of-flight (ToF) depth sensing, indirect ToF depth sensing, structured light, passive stereo analysis, active stereo analysis (uses texture added to the scene by light from the illuminator 140), some other technique to determine depth of a scene, or some combination thereof.
The audio system provides audio content. The audio system includes a transducer array, a sensor array, and an audio controller 150. However, in other embodiments, the audio system may include different and/or additional components. Similarly, in some cases, functionality described with reference to the components of the audio system can be distributed among the components in a different manner than is described here. For example, some or all of the functions of the controller may be performed by a remote server.
The transducer array presents sound to user. The transducer array includes a plurality of transducers. A transducer may be a speaker 160 or a tissue transducer 170 (e.g., a bone conduction transducer or a cartilage conduction transducer). Although the speakers 160 are shown exterior to the frame 110, the speakers 160 may be enclosed in the frame 110. In some embodiments, instead of individual speakers for each ear, the headset 100 includes a speaker array comprising multiple speakers integrated into the frame 110 to improve directionality of presented audio content. The tissue transducer 170 couples to the head of the user and directly vibrates tissue (e.g., bone or cartilage) of the user to generate sound. The number and/or locations of transducers may be different from what is shown in
The sensor array detects sounds within the local area of the headset 100. The sensor array includes a plurality of acoustic sensors 180. An acoustic sensor 180 captures sounds emitted from one or more sound sources in the local area (e.g., a room). Each acoustic sensor is configured to detect sound and convert the detected sound into an electronic format (analog or digital). The acoustic sensors 180 may be acoustic wave sensors, microphones, sound transducers, or similar sensors that are suitable for detecting sounds.
In some embodiments, one or more acoustic sensors 180 may be placed in an ear canal of each ear (e.g., acting as binaural microphones). In some embodiments, the acoustic sensors 180 may be placed on an exterior surface of the headset 100, placed on an interior surface of the headset 100, separate from the headset 100 (e.g., part of some other device), or some combination thereof. The number and/or locations of acoustic sensors 180 may be different from what is shown in
The audio controller 150 processes information from the sensor array that describes sounds detected by the sensor array. The audio controller 150 may comprise a processor and a computer-readable storage medium. The audio controller 150 may be configured to generate direction of arrival (DOA) estimates, generate acoustic transfer functions (e.g., array transfer functions and/or head-related transfer functions), track the location of sound sources, form beams in the direction of sound sources, classify sound sources, generate sound filters for the speakers 160, or some combination thereof.
The position sensor 190 generates one or more measurement signals in response to motion of the headset 100. The position sensor 190 may be located on a portion of the frame 110 of the headset 100. The position sensor 190 may include an inertial measurement unit (IMU). Examples of position sensor 190 include: one or more accelerometers, one or more gyroscopes, one or more magnetometers, another suitable type of sensor that detects motion, a type of sensor used for error correction of the IMU, or some combination thereof. The position sensor 190 may be located external to the IMU, internal to the IMU, or some combination thereof.
In some embodiments, the headset 100 may provide for simultaneous localization and mapping (SLAM) for a position of the headset 100 and updating of a model of the local area. For example, the headset 100 may include a passive camera assembly (PCA) that generates color image data. The PCA may include one or more RGB cameras that capture images of some or all of the local area. In some embodiments, some or all of the imaging devices 130 of the DCA may also function as the PCA. The images captured by the PCA and the depth information determined by the DCA may be used to determine parameters of the local area, generate a model of the local area, update a model of the local area, or some combination thereof. Furthermore, the position sensor 190 tracks the position (e.g., location and pose) of the headset 100 within the room. Additional details regarding the components of the headset 100 are discussed below in connection with
The optical block 118 includes a display element 120 (also referred to as a display or a display device), and the optics block 125. The display element 120 emits image light toward the optics block 125. The optics block 125 magnifies the image light, and in some embodiments, also corrects for one or more additional optical errors (e.g., distortion, astigmatism, etc.). The optics block 125 directs the image light to the exit pupil 190 for presentation to the user.
The application processor 210 generates display data for controlling the display device to display a desired image. The display data include multiple pixel data, each for controlling one pixel of the display device to emit light with a corresponding intensity. In some embodiments, each pixel data includes sub-pixel data corresponding to different colors (e.g., red, green, and blue). Moreover, in some embodiments, the application processor 210 generates display data for multiple display frames to display a video.
The display device 220 includes a display driver integrated circuit (DDIC) 230, an active layer 240, a liquid crystal (LC) layer 260, one or more backlight units 265, polarizers 250, and a color filter 255. The display device 220 may include additional elements, such as one or more additional sensors. The display device 220 may be part of the HMD 100 in
The DDIC 230 receives a display signal from the application processor 210 and generates control signals for controlling each pixel 245 in the active layer 240, and the one or more BLUs 265. In one example, the DDIC 230 generates signals to program each of the pixels 245 in the active layer 240 according to an image signal received from the application processor 210. Moreover, the DDIC 230 generates one or more signals to control one or more light sources of the one or more BLUs 265 (e.g., light sources 266A and 266B). In some embodiments, the display device 220 may include a driver separate from the DDIC 230 that additionally or alternatively controls the one or more light sources. One example of an LED driver is shown in
The active layer 240 includes a set of pixels 245 organized in rows and columns. For example, the active layer 240 includes N pixels (P11 through P1N) in the first row, N pixels (P21 through P2N) in the second row, N pixels (P31 through P3N) in the third row, and so on. Each pixel includes sub-pixels, each corresponding to a different color. For example, each pixel includes red, green, and blue sub-pixels. In addition, each pixel may include white sub-pixels. Each sub-pixel may include a thin-film-transistor (TFT) for controlling the liquid crystal in the LC layer 260. For example, the TFT of each sub-pixel is used to control an electric field within a specific area of the LC layer to control the crystal orientation of the liquid crystal within the specific area if the LC layer 260.
The LC layer 260 includes a liquid crystal which has some properties between liquids and solid crystals. In particular, the liquid crystal has molecules that may be oriented in a crystal-like way. The crystal orientation of the molecules of the liquid crystal can be controlled or changed by applying an electric field across the liquid crystal. The liquid crystal may be controlled in different way by applying the electric field in different configurations. Schemes for controlling the liquid crystal includes twisted noematic (TN), in-plane switching (IPS), plane line switching (PLS), fringe field switching (FFS), vertical alignment (VA), etc.
Each pixel 245 is controlled to provide a light output that corresponds to the display signal received from the application processor 210. For instance, in the case of an LCD panel, the active layer 240 includes an array of liquid crystal cells with a controllable polarizations state that can be modified to control an amount of light that can pass through the cell.
The one or more BLUs 265 may be turned on at predetermined time periods to generate light that can pass through each of the liquid crystal cell to produce a picture for display by the display device. The one or more BLUs 265 include one or more light sources 266 (e.g., light sources 266A and 266B shown in
The polarizers 250 filter the light outputted by the one or more BLUs 265 based on the polarization of the light. The polarizers 250 may include a back polarizer 250A and a front polarizer 250B. The back polarizer 250A filters the light outputted by the one or more light sources 265 to provide a polarized light to the LC layer 260. The front polarizer 250B filters the light outputted by the LC layer 260. Since the light provided to the LC layer 260 is polarized by the back polarizer 250A, the LC layer controls an amount of filtering of the front polarizer 250B by adjusting the polarization of the light outputted by the back polarizer 250A.
The color filter 255 filters the light outputted by the LC layer 260 based on color. For instance, the one or more BLUs 265 generates white light and the color filter 255 filters the white light to output either red, green, or blue light. The color filter 255 may include a grid of red color filters, green color filters, and blue color filters. In some embodiments, the elements of the display device 220 are arranged in a different order. For example, the color filter may be placed between the one or more BLUs 265 and the back polarizer 250A, between the back polarizer 250A and the LC layer 260, or after the front polarizer 250B.
In the illustrative case where each segment of the display device 220 for illumination includes one row of pixels 245, the segmented illumination can be referred to as a rolling illumination. For the rolling illumination, all pixels 245 in a first row of the display device 220 simultaneously illuminate image light in a first time instant; all pixels 245 in a second row of the display device 220 simultaneously illuminate image light in a second time instant consecutive to the first time instant; all pixels 245 in a third row of the display device 220 simultaneously illuminate image light in a third time instant consecutive to the second time instant, and so on. Other orders of illumination of rows and segments of the display device 220 are also supported in the present disclosure. In yet another embodiment, the display device 220 may display video content based on a controllable illumination where all pixels 245 in a portion of the display device 220 of a controllable size (not shown in
Although the above description describes a liquid crystal display device 220, other types of display devices, such as an organic light-emitting diode (OLED), may be used.
While diffusion plates in
The light sources 320 and light sources referenced in
The BLU 400 has a first dimension, x2, which may be a horizontal dimension or width, and a second dimension, y2, which may be a vertical dimension or height. In particular, the height, y2, is shorter than the height, y1, of the BLU 300 due to the placement of the light sources 420 at slanted portions of the left side 413 and the right side 414. In contrast with light sources located at the top and bottom sides of the diffusion plate 410, the light sources 420 located at the slanted portions allow for portions of the vertical dimension at the top and bottom of the BLU 400 to be removed, causing y2 to be shorter than y1. This dimension reduction decreases resources (e.g., time and material) needed for production of the BLU 400 as compared with the production for the BLU 300. Because the BLU 400 may be produced with less material than the BLU 300, the BLU 400 may also be lighter than the BLU 300, which is beneficial for wearable displays (e.g., the headsets depicted in
The light sources 420 of the BLU 400 may be evenly distributed across the slanted portions of the diffusion plate 410. This may improve the lighting uniformity of the BLU 400 as compared with that of the BLU 300, which may have a non-uniform lighting distribution due to the differing number of light sources 320 at the bottom side 312 of the diffusion plate 310 than at the top side 311. Although twelve light sources 420 are depicted in
By modifying an amount of light emitted by the light sources 520 or selecting a subset of light sources to turn OFF, the LED driver of the BLU 500 may conserve e power and allow for local dimming. The local dimming may serve to enhance the display of media that may prioritize a high a contrast ratio between dark and light shades. The LED driver’s ability to select a subset of the light sources 520 to dim in addition to the placement of the light sources 520 at slanted portions of the sides of the diffusion plate 510 also enables increased dimming customization according to the image displayed. For example, as compared to selecting lights at only the top and bottom sides of a diffusion plate to dim, selecting lights at any or all of the slanted portions increases the different dimming patterns and coverage across the surface area of the diffusion plate 510.
The BLU 600 may have a frame 630 that is shaped similarly or the same as the diffusion plate. For example, the diffusion plate may have an octagonal shape (e.g., as shown in
A display device emits 810 light by light sources of a BLU. For example, a headset may emit 810 light by a BLU when displaying video or images to a user. The LEDs of the BLU are sources of light directed towards various pixels for displaying the video or images. In some embodiments, the display device may emit 810 light through light sources of multiple BLUs. One or more drivers of the display device (e.g., DDIC or LED driver) may determine the manner through which light is emitted 810. The one or more drivers may also perform other steps of the method 800.
The display device determines 820 a selection of one or more of the light sources. The display device may determine 820 the selection based on the image or video displayed (e.g., based on image contrast), power saving conditions (e.g., a period of idle time before automatically dimming the lights), user environment (e.g., an intensity of ambient light may cause the display device to increase or decrease the intensity emitted by the lights), manual instructions (e.g., user requests to adjust the contrast of displayed images), any suitable context parameter for adjusting the light intensity of a BLU light source, or a combination thereof.
The display device modifies 830 an amount of light emitted by the one or more of the light sources. The display device may turn OFF a light source, turn ON a light source, or lower or increase an intensity emitted from the one or more light sources. For example, the display device may increase the intensity emitted by one or more light sources in response to determining that the ambient light intensity is above a threshold value. In another example, the display device may turn OFF a subset of light sources in response to determining that an image to be displayed or currently displayed has a contrast level that may be achieved faster when the subset of light sources located near a darker portion of the image are turned OFF.
The headset 905 includes the display assembly 930, an optics block 935, one or more position sensors 940, and the DCA 945. Some embodiments of headset 905 have different components than those described in conjunction with
The display assembly 930 displays content to the user in accordance with data received from the console 915. The display assembly 930 displays the content using one or more display elements (e.g., the display elements 120). A display element may be, e.g., an electronic display. In various embodiments, the display assembly 930 comprises a single display element or multiple display elements (e.g., a display for each eye of a user). Examples of an electronic display include: a liquid crystal display (LCD), an organic light emitting diode (OLED) display, an active-matrix organic light-emitting diode display (AMOLED), a waveguide display, some other display, or some combination thereof. Note in some embodiments, the display element 120 may also include some or all of the functionality of the optics block 935.
The optics block 935 may magnify image light received from the electronic display, corrects optical errors associated with the image light, and presents the corrected image light to one or both eyeboxes of the headset 905. In various embodiments, the optics block 935 includes one or more optical elements. Example optical elements included in the optics block 935 include: an aperture, a Fresnel lens, a convex lens, a concave lens, a filter, a reflecting surface, or any other suitable optical element that affects image light. Moreover, the optics block 935 may include combinations of different optical elements. In some embodiments, one or more of the optical elements in the optics block 935 may have one or more coatings, such as partially reflective or anti-reflective coatings.
Magnification and focusing of the image light by the optics block 935 allows the electronic display to be physically smaller, weigh less, and consume less power than larger displays. Additionally, magnification may increase the field of view of the content presented by the electronic display. For example, the field of view of the displayed content is such that the displayed content is presented using almost all (e.g., approximately 110 degrees diagonal), and in some cases, all of the user’s field of view. Additionally, in some embodiments, the amount of magnification may be adjusted by adding or removing optical elements.
In some embodiments, the optics block 935 may be designed to correct one or more types of optical error. Examples of optical error include barrel or pincushion distortion, longitudinal chromatic aberrations, or transverse chromatic aberrations. Other types of optical errors may further include spherical aberrations, chromatic aberrations, or errors due to the lens field curvature, astigmatisms, or any other type of optical error. In some embodiments, content provided to the electronic display for display is pre-distorted, and the optics block 935 corrects the distortion when it receives image light from the electronic display generated based on the content.
The position sensor 940 is an electronic device that generates data indicating a position of the headset 905. The position sensor 940 generates one or more measurement signals in response to motion of the headset 905. The position sensor 190 is an embodiment of the position sensor 940. Examples of a position sensor 940 include: one or more IMUs, one or more accelerometers, one or more gyroscopes, one or more magnetometers, another suitable type of sensor that detects motion, or some combination thereof. The position sensor 940 may include multiple accelerometers to measure translational motion (forward/back, up/down, left/right) and multiple gyroscopes to measure rotational motion (e.g., pitch, yaw, roll). In some embodiments, an IMU rapidly samples the measurement signals and calculates the estimated position of the headset 905 from the sampled data. For example, the IMU integrates the measurement signals received from the accelerometers over time to estimate a velocity vector and integrates the velocity vector over time to determine an estimated position of a reference point on the headset 905. The reference point is a point that may be used to describe the position of the headset 905. While the reference point may generally be defined as a point in space, however, in practice the reference point is defined as a point within the headset 905.
The DCA 945 generates depth information for a portion of the local area. The DCA includes one or more imaging devices and a DCA controller. The DCA 945 may also include an illuminator. Operation and structure of the DCA 945 is described above with regard to
The audio system 950 provides audio content to a user of the headset 905. The audio system 950 is substantially the same as the audio system described above with reference to
The I/O interface 910 is a device that allows a user to send action requests and receive responses from the console 915. An action request is a request to perform a particular action. For example, an action request may be an instruction to start or end capture of image or video data, or an instruction to perform a particular action within an application. The I/O interface 910 may include one or more input devices. Example input devices include: a keyboard, a mouse, a game controller, or any other suitable device for receiving action requests and communicating the action requests to the console 915. An action request received by the I/O interface 910 is communicated to the console 915, which performs an action corresponding to the action request. In some embodiments, the I/O interface 910 includes an IMU that captures calibration data indicating an estimated position of the I/O interface 910 relative to an initial position of the I/O interface 910. In some embodiments, the I/O interface 910 may provide haptic feedback to the user in accordance with instructions received from the console 915. For example, haptic feedback is provided when an action request is received, or the console 915 communicates instructions to the I/O interface 910 causing the I/O interface 910 to generate haptic feedback when the console 915 performs an action.
The console 915 provides content to the headset 905 for processing in accordance with information received from one or more of: the DCA 945, the headset 905, and the I/O interface 910. In the example shown in
The application store 955 stores one or more applications for execution by the console 915. An application is a group of instructions, that when executed by a processor, generates content for presentation to the user. Content generated by an application may be in response to inputs received from the user via movement of the headset 905 or the I/O interface 910. Examples of applications include: gaming applications, conferencing applications, video playback applications, or other suitable applications.
The tracking module 960 tracks movements of the headset 905 or of the I/O interface 910 using information from the DCA 945, the one or more position sensors 940, or some combination thereof. For example, the tracking module 960 determines a position of a reference point of the headset 905 in a mapping of a local area based on information from the headset 905. The tracking module 960 may also determine positions of an object or virtual object. Additionally, in some embodiments, the tracking module 960 may use portions of data indicating a position of the headset 905 from the position sensor 940 as well as representations of the local area from the DCA 945 to predict a future location of the headset 905. The tracking module 960 provides the estimated or predicted future position of the headset 905 or the I/O interface 910 to the engine 965.
The engine 965 executes applications and receives position information, acceleration information, velocity information, predicted future positions, or some combination thereof, of the headset 905 from the tracking module 960. Based on the received information, the engine 965 determines content to provide to the headset 905 for presentation to the user. For example, if the received information indicates that the user has looked to the left, the engine 965 generates content for the headset 905 that mirrors the user’s movement in a virtual local area or in a local area augmenting the local area with additional content. Additionally, the engine 965 performs an action within an application executing on the console 915 in response to an action request received from the I/O interface 910 and provides feedback to the user that the action was performed. The provided feedback may be visual or audible feedback via the headset 905 or haptic feedback via the I/O interface 910.
The network 920 couples the headset 905 and/or the console 915 to the mapping server 925. The network 920 may include any combination of local area and/or wide area networks using both wireless and/or wired communication systems. For example, the network 920 may include the Internet, as well as mobile telephone networks. In one embodiment, the network 920 uses standard communications technologies and/or protocols. Hence, the network 920 may include links using technologies such as Ethernet, 802.11, worldwide interoperability for microwave access (WiMAX), 2G/3G/4G mobile communications protocols, digital subscriber line (DSL), asynchronous transfer mode (ATM), InfiniBand, PCI Express Advanced Switching, etc. Similarly, the networking protocols used on the network 920 can include multiprotocol label switching (MPLS), the transmission control protocol/Internet protocol (TCP/IP), the User Datagram Protocol (UDP), the hypertext transport protocol (HTTP), the simple mail transfer protocol (SMTP), the file transfer protocol (FTP), etc. The data exchanged over the network 920 can be represented using technologies and/or formats including image data in binary form (e.g. Portable Network Graphics (PNG)), hypertext markup language (HTML), extensible markup language (XML), etc. In addition, all or some of links can be encrypted using conventional encryption technologies such as secure sockets layer (SSL), transport layer security (TLS), virtual private networks (VPNs), Internet Protocol security (IPsec), etc.
The mapping server 925 may include a database that stores a virtual model describing a plurality of spaces, wherein one location in the virtual model corresponds to a current configuration of a local area of the headset 905. The mapping server 925 receives, from the headset 905 via the network 920, information describing at least a portion of the local area and/or location information for the local area. The user may adjust privacy settings to allow or prevent the headset 905 from transmitting information to the mapping server 925. The mapping server 925 determines, based on the received information and/or location information, a location in the virtual model that is associated with the local area of the headset 905. The mapping server 925 determines (e.g., retrieves) one or more acoustic parameters associated with the local area, based in part on the determined location in the virtual model and any acoustic parameters associated with the determined location. The mapping server 925 may transmit the location of the local area and any values of acoustic parameters associated with the local area to the headset 905.
One or more components of system 900 may contain a privacy module that stores one or more privacy settings for user data elements. The user data elements describe the user or the headset 905. For example, the user data elements may describe a physical characteristic of the user, an action performed by the user, a location of the user of the headset 905, a location of the headset 905, an HRTF for the user, etc. Privacy settings (or “access settings”) for a user data element may be stored in any suitable manner, such as, for example, in association with the user data element, in an index on an authorization server, in another suitable manner, or any suitable combination thereof.
A privacy setting for a user data element specifies how the user data element (or particular information associated with the user data element) can be accessed, stored, or otherwise used (e.g., viewed, shared, modified, copied, executed, surfaced, or identified). In some embodiments, the privacy settings for a user data element may specify a “blocked list” of entities that may not access certain information associated with the user data element. The privacy settings associated with the user data element may specify any suitable granularity of permitted access or denial of access. For example, some entities may have permission to see that a specific user data element exists, some entities may have permission to view the content of the specific user data element, and some entities may have permission to modify the specific user data element. The privacy settings may allow the user to allow other entities to access or store user data elements for a finite period of time.
The privacy settings may allow a user to specify one or more geographic locations from which user data elements can be accessed. Access or denial of access to the user data elements may depend on the geographic location of an entity who is attempting to access the user data elements. For example, the user may allow access to a user data element and specify that the user data element is accessible to an entity only while the user is in a particular location. If the user leaves the particular location, the user data element may no longer be accessible to the entity. As another example, the user may specify that a user data element is accessible only to entities within a threshold distance from the user, such as another user of a headset within the same local area as the user. If the user subsequently changes location, the entity with access to the user data element may lose access, while a new group of entities may gain access as they come within the threshold distance of the user.
The system 900 may include one or more authorization/privacy servers for enforcing privacy settings. A request from an entity for a particular user data element may identify the entity associated with the request and the user data element may be sent only to the entity if the authorization server determines that the entity is authorized to access the user data element based on the privacy settings associated with the user data element. If the requesting entity is not authorized to access the user data element, the authorization server may prevent the requested user data element from being retrieved or may prevent the requested user data element from being sent to the entity. Although this disclosure describes enforcing privacy settings in a particular manner, this disclosure contemplates enforcing privacy settings in any suitable manner.
The foregoing description of the embodiments has been presented for illustration; it is not intended to be exhaustive or to limit the patent rights to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible considering the above disclosure.
Some portions of this description describe the embodiments in terms of algorithms and symbolic representations of operations on information. These algorithmic descriptions and representations are commonly used by those skilled in the data processing arts to convey the substance of their work effectively to others skilled in the art. These operations, while described functionally, computationally, or logically, are understood to be implemented by computer programs or equivalent electrical circuits, microcode, or the like. Furthermore, it has also proven convenient at times, to refer to these arrangements of operations as modules, without loss of generality. The described operations and their associated modules may be embodied in software, firmware, hardware, or any combinations thereof.
Any of the steps, operations, or processes described herein may be performed or implemented with one or more hardware or software modules, alone or in combination with other devices. In one embodiment, a software module is implemented with a computer program product comprising a computer-readable medium containing computer program code, which can be executed by a computer processor for performing any or all the steps, operations, or processes described.
Embodiments may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, and/or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a non-transitory, tangible computer readable storage medium, or any type of media suitable for storing electronic instructions, which may be coupled to a computer system bus. Furthermore, any computing systems referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
Embodiments may also relate to a product that is produced by a computing process described herein. Such a product may comprise information resulting from a computing process, where the information is stored on a non-transitory, tangible computer readable storage medium and may include any embodiment of a computer program product or other data combination described herein.
Finally, the language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the patent rights. It is therefore intended that the scope of the patent rights be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments is intended to be illustrative, but not limiting, of the scope of the patent rights, which is set forth in the following claims.
This application claims the benefit of U.S. Provisional Application No. 63/322,789, filed Mar. 23, 2022, which is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63322789 | Mar 2022 | US |