This application claims priority from Russian Patent Application No. 2018113739, filed on Apr. 16, 2018 in the Russian Patent Office and Korean Patent Application No. 10-2019-0018841, filed on Feb. 18, 2019 in the Korean Intellectual Property Office, the disclosures of which are incorporated herein in their entireties by reference.
Example embodiments of the present disclosure relate to backlight units providing uniform light and display apparatuses including the same.
Currently, backlight units are designed to minimize the thickness thereof, and one approach therefor is an edge-emitting backlight.
In the case of an edge-emitting backlight unit, a light source is arranged on a side portion of a light guide plate, and the light from the light source propagates inside the light guide plate and is output through a light output surface that is an upper surface of the light guide plate. Some light thereof is not output through the light output surface and is lost through another side portion of the light guide plate.
The luminance of the output light, the uniformity thereof, and the efficiency at which the light from the light source is output through the light output surface are major factors in forming a high-quality image using the light of the backlight unit. However, using a powerful light source to improve nonuniform luminance or inefficiency may be power-consuming and may be undesirable in the environment of a mobile device.
One or more example embodiments provide backlight units with improved uniformity and light efficiency.
One or more example embodiments also provide display apparatuses forming high-quality images by using backlight units with improved uniformity and light efficiency.
Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of example embodiments.
According to an aspect of an example embodiment, there is provided a backlight unit including a light source configured to emit light, a light guide plate including a first surface, a second surface that is opposite to the first surface in a first direction, a third surface, and a fourth surface that is opposite to the third surface in a second direction, the second direction being different from the first direction, an input grating provided on the light guide plate adjacent to the third surface, the input grating being configured to input the light emitted by the light source into the light guide plate such that the light input is totally reflected inside of the light guide plate, an output grating provided on one of the first surface and the second surface of the light guide plate, the output grating being configured to diffract light that is incident on the output grating from inside of the light guide plate and output the light toward an outside of the light guide plate, a first recuperation element provided on the one of the first surface and the second surface of the light guide plate and adjacent to the fourth surface, the first recuperation element including a first recycle grating, and a second recuperation element provided on the other one of the first surface and the second surface of the light guide plate opposite to the first recuperation element in the first direction, the second recuperation element being configured to direct, to the first recuperation element, the light propagating inside the light guide plate that is incident on the second recuperation element.
The light propagating inside the light guide plate may include direct propagating light that does not propagate through the first recuperation element and the second recuperation element, and recuperation propagating light that propagates through at least one of the first recuperation element and the second recuperation element, and wherein the first recuperation element and the second recuperation element may be configured such that the recuperation propagating light has a certain path difference from the direct propagating light.
The first recuperation element may be configured to diffract the recuperation propagating light toward the inside of the light guide plate, and the first recycle grating may be configured to maximize negative second-order diffracted light directed toward the inside of the light guide plate.
The output grating may include a diffraction pattern that is configured to output the direct propagating light and the recuperation propagating light in parallel to each other.
The diffraction pattern may be set such that an intensity distribution trend of the direct propagating light output through the output grating and an intensity distribution trend of the recuperation propagating light output through the output grating are opposite to each other in a direction from the input grating to the first recuperation element.
The second recuperation element may include a mirror.
The second recuperation element may include a second recycle grating.
The output grating, the first recycle grating, and the second recycle grating may be coated with mirror.
The backlight unit may further include a dichroic layer provided on the first surface or the second surface of the light guide plate, the dichroic layer being configured to reflect light of a certain wavelength band, the dichroic layer may be further configured to reflect, back toward the output grating, light that is not output to the outside of the light guide plate from among the light incident on the output grating.
The dichroic layer may be further configured to reflect light incident on the dichroic layer at a certain angle.
The dichroic layer may be further configured to reflect negative first-order diffracted light that is diffracted by the output grating.
One of the output grating and the dichroic layer may be provided on the first surface of the light guide plate and the other of the output grating and the dichroic layer may be provided on the second surface of the light guide plate.
The output grating may include a relief pattern, and the dichroic layer may be provided on the relief pattern.
The backlight unit may further include an immersion layer covering the relief pattern, wherein the dichroic layer may be provided on the immersion layer opposite to the relief pattern.
The backlight unit may further include a mirror layer provided on the first surface or the second surface of the light guide plate, the mirror layer may be configured to reflect, back toward the output grating, light that is not output to the outside of the light guide plate from among the light incident on the output grating.
According to an aspect of another example embodiment, there is provided a display apparatus including a light source configured to emit light, a light guide plate including a first surface, a second surface that is opposite to the first surface in a first direction, a third surface, and a fourth surface that is opposite to the third surface in a second direction, the second direction being different from the first direction, an input grating provided on the light guide plate adjacent to the third surface, the input grating being configured to input the light emitted by the light source into the light guide plate such that the light input is totally reflected inside of the light guide plate, an output grating provided on one of the first surface and the second surface of the light guide plate, the output grating being configured to diffract light that is incident on the output grating from inside of the light guide plate and output the light toward an outside of the light guide plate, a first recuperation element provided on the one of the first surface and the second surface of the light guide plate and adjacent to the fourth surface, the first recuperation element including a first recycle grating, and a second recuperation element provided on the other one of the first surface and the second surface of the light guide plate opposite to the first recuperation element in the first direction, the second recuperation element being configured to direct, to the first recuperation element, the light propagating inside the light guide plate that is incident on the second recuperation element, and a spatial light modulator configured to form a hologram image based on the light from the backlight unit.
According to an aspect of another example embodiment, there is provided a backlight unit including a light source configured to emit light of a certain wavelength band, a light guide plate including a first surface, a second surface that is opposite to the first surface in a first direction, a third surface and a fourth surface that is opposite to the third surface in a second direction, the second direction being different from the first direction, an input grating provided on the light guide plate adjacent to the third surface, the input grating being configured to input the light emitted by the light source into the light guide plate such that the light input is totally reflected inside of the light guide plate, an output grating provided on one of the first surface or the second surface, the output grating being configured to diffract light that is incident on the output grating from inside of the light guide plate and output the light in a direction toward an outside of the light guide plate, and a dichroic layer provided on the first surface or the second surface of the light guide plate, the dichroic layer being configured to reflect light of the certain wavelength that is incident on the first surface or the second surface, at an angle smaller than a critical angle of total internal reflection of the light guide plate, toward the output grating.
The backlight unit may further including a first recuperation element provided on one of the first surface and the second surface and adjacent to the fourth surface, the first recuperation element may include a first recycle grating, and a second recuperation element provided opposite to the first recuperation element in the first direction, the second recuperation element being configured to direct, to the first recuperation element, light propagating inside the light guide plate that is incident on the second recuperation element.
The light propagating inside the light guide plate may include direct propagating light that does not propagate through the first recuperation element and the second recuperation element, and recuperation propagating light that propagates through at least one of the first recuperation element and the second recuperation element, and the first recuperation element and the second recuperation element may be configured such that the recuperation propagating light has a certain path difference from the direct propagating light.
The first recuperation element may be configured to diffract the recuperation propagating light toward an inside of the light guide plate, and the first recycle grating may be configured to maximize negative second-order diffracted light directed toward the inside of the light guide plate.
The output grating may include a diffraction pattern that is configured to output the direct propagating light and the recuperation propagating light in parallel to each other.
The diffraction pattern may be configured such that an intensity distribution trend of the direct propagating light output through the output grating and an intensity distribution trend of the recuperation propagating light output through the output grating are opposite to each other in a direction from the input grating to the first recuperation element.
The second recuperation element may include a mirror.
The second recuperation element may include a second recycle grating.
The output grating, the first recycle grating, and the second recycle grating may be mirror-coated.
The dichroic layer may be further configured to reflect negative first-order diffracted light that is diffracted by the output grating.
One of the output grating and the dichroic layer may be provided on the first surface of the light guide plate and the other one of the output grating and the dichroic layer is provided on the second surface of the light guide plate.
The output grating may include a relief pattern, and the dichroic layer may be provided on the relief pattern.
The output grating may include a relief pattern, wherein the backlight unit may further include an immersion layer covering the relief pattern, and wherein the dichroic layer is provided on the immersion layer opposite to the relief pattern.
According to an aspect of another example embodiment, there is provided a display apparatus including a light source configured to emit light of a certain wavelength band, a light guide plate including a first surface, a second surface that is opposite to the first surface in a first direction, a third surface and a fourth surface that is opposite to the third surface in a second direction, the second direction being different from the first direction, an input grating provided on the light guide plate adjacent to the third surface, the input grating being configured to input the light emitted by the light source into the light guide plate such that the light input is totally reflected inside of the light guide plate, an output grating provided on one of the first surface or the second surface, the output grating being configured to diffract light that is incident on the output grating from inside of the light guide plate and output the light in a direction toward an outside of the light guide plate, and a dichroic layer provided on the first surface or the second surface of the light guide plate, the dichroic layer being configured to reflect light of the certain wavelength that is incident on the first surface or the second surface, at an angle smaller than a critical angle of total internal reflection of the light guide plate, toward the output grating, and a spatial light modulator configured to form a hologram image based on the light from the backlight unit.
The output grating may include a relief pattern, wherein the backlight unit may further include an immersion layer covering the relief pattern, wherein the dichroic layer is provided between the immersion layer and the light guide plate.
The output grating may include a relief pattern, and wherein the dichroic layer is provided on the light guide plate opposite to the relief pattern in the first direction.
The above and/or other aspects will become apparent and more readily appreciated from the following description of example embodiments, taken in conjunction with the accompanying drawings in which:
Reference will now be made in detail to example embodiments of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, example embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, example embodiments are merely described below, by referring to the figures, to explain aspects.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. For example, the expression, “at least one of a, b, and c,” should be understood as including only a, only b, only c, both a and b, both a and c, both b and c, or all of a, b, and c.
Hereinafter, example embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the drawings, like reference numerals may denote like elements, and the size of each element may be exaggerated for clarity and convenience of description. The embodiments described below are merely examples, and various modifications may be made therein.
As used herein, the terms “over” or “on” may include not only “directly over” or “directly on” but also “indirectly over” or “indirectly on”.
As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Also, when something is referred to as “including” or “comprising” a component, another component may be further included unless specified otherwise.
Also, the operations of a method described herein may be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by the context. The method is not limited to the described order of the operations. All examples or example terms (e.g., “such as”) provided herein are merely intended to describe the technical concept of the present disclosure in detail, and the scope of the present disclosure is not limited by the examples or example terms unless otherwise defined in the following claims.
A backlight unit 100 may include a light source 110, an input grating 120 for inputting the light from the light source 110 into a light guide plate 130, the light guide plate 130 for propagating the input light, an output grating 140 for outputting the light propagating in the light guide plate 130 outside the light guide plate 130, and a light recuperation module for preventing or reducing light from being lost at one side portion of the light guide plate 130.
The light source 110 may provide a coherent light beam. For example, a laser diode for generating a light with high coherence may be used as the light source 110, but embodiments are not limited thereto. For example, various light emitting devices, such as light emitting diode (LEDs), having coherence may be used as the light source 110.
The light guide plate 130 may include a first surface 130a and a second surface 130b facing each other in a first direction and a third surface 130c and a fourth surface 130d facing each other in a second direction different from the first direction. Referring to
The input grating 120 may be arranged adjacent to the third surface 130c. Although it is illustrated that the input grating 120 is arranged adjacent to the left edge on the upper surface of the light guide plate 130, embodiments are not limited thereto. For example, the input grating 120 may be arranged adjacent to the left edge on the lower surface of the light guide plate 130, or the input grating 120 may be arranged on the third surface 130c.
The input grating 120 may input the light from the light source 110 in a total reflection direction inside the light guide plate. That is, the input grating 120 may input the light on the first surface 130a or the second surface 130b of the light guide plate 130 with an incident angle so that total reflection occurs on the surface of the light guide plate 130. The input grating 120 may include a diffractive optical element for diffracting and transmitting a portion of light. The detailed form or arrangement position of the input grating 120 may be determined by considering the position of the light source 110. The position of the light source 110 is not limited to the illustrated position, and may be located at any position near the left edge of the light guide plate 130.
The output grating 140 may be arranged on any one of the first surface 130a and the second surface 130b of the light guide plate 130, and may output the light input and propagated inside the light guide plate 130, in a direction facing outside the light guide plate 130. The output grating 140 may include a diffractive optical element for diffracting and transmitting a portion of light. Although it is illustrated that the output grating 140 is arranged on the upper surface of the light guide plate 130, example embodiments are not limited thereto, and the output grating 140 may be arranged on the lower surface of the light guide plate 130. The upper surface of the light guide plate 130, that is, the first surface 130a, is illustrated as a light output surface, and the position of the light output surface is defined as a surface in a direction facing a viewer. The light exiting the light guide plate 130 through a surface other than the light output surface may become a lost light that may not be effectively used.
Whenever the light input into the light guide plate 130 through the input grating 120, is totally-reflected inside the light guide plate 130 and propagated inside the light guide plate 130 is incident to the output grating 140, a portion of the light may be diffracted and output through the output grating 140 and the remaining light, for example, non-diffracted light or 0th-order diffracted light, may continue to propagate toward the right edge of the light guide plate 130.
The light recuperation module may include a first recuperation element 150 arranged adjacent to the right edge on the first surface 130a of the light guide plate 130 and a second recuperation element 160 arranged adjacent to the right edge on the second surface 130b of the light guide plate 130. The positions of the first recuperation element 150 and the second recuperation element 160 are not limited thereto and may be reversed.
The first recuperation element 150 may include a recycle grating for reuse of light. The first recuperation element 150 may be configured to return an input light propagated from the left side to the right side of the light guide plate 130 back to the left side to recuperate the input light into the light guide plate 130. The recycle grating included in the first recuperation element 150 may diffract the input light in a total reflection direction inside the light guide plate 130. The recycle grating included in the first recuperation element 150 may be coated with a reflection member, for example, a mirror.
The second recuperation element 160 may be arranged to face the first recuperation element 150 and may direct most of the input light propagating inside the light guide plate 130 toward the first recuperation element 150. For this purpose, the second recuperation element 160 may be configured to reflect or diffract light.
The gratings included in the backlight unit 100, for example, the input grating 120, the output grating 140, and the recycle gratings of the first recuperation element 150, may provide a desired change in the phase of an input light, and thus, may have various forms for performing operations such as divergence, convergence, and collimation on light by changing the shape of a wavefront of light. For example, the gratings may exhibit various diffraction patterns, and may include a relief-phase grating having a physical relief pattern. The relief-phase grating may induce various light changes by adjusting a surface profile thereof. In order to exhibit a desired diffraction pattern, the gratings may be implemented as a hologram where an interference pattern for diffracting light is recorded. The gratings may include any mediums for securing a phase change of an incident wave by a refractive index change, for example, materials such as liquid crystals and polymers. The above gratings may be manufactured by, for example, lithography and holographic recording.
Referring to
In order to form such a light path, the diffraction pattern of the recycle grating included in the first recuperation element 150 may be set to maximize negative second-order diffracted light directed to the inside of the light guide plate 130. For example, as for the profile of the grating surface of the recycle grating, the depth of the relief pattern or the duty cycle thereof (i.e., the ratio between a convex surface and a concave surface of the surface profile) may be calculated for optimization of negative second-order diffraction. These parameters may be adjusted to obtain a desired profile for diffraction efficiency.
The output grating 140 may include a diffraction pattern for outputting the direct propagating light Ldi and the recuperation propagating light Lre in parallel to each other. Accordingly, the lights output through various paths from inside the light guide plate 130 may have a uniform directivity. The diffraction pattern of the output grating 140 may be set such that the intensity distribution trend of the output light of the direct propagating light Ldi output through the output grating 140 and the intensity distribution trend of the output light of the recuperation propagating light Lre that are output through the output grating 140 may be opposite to each other. Referring to
Each of the output grating 140 and the recycle grating of the first recuperation element 150 may have a uniform grating period. It may also be possible to provide the uniformity of the output light by using a nonuniform grating period, that is, a grating period varying according to positions.
As described above, the arrangement positions, sizes, and detailed forms of the output grating 140 and the recycle grating of the first recuperation element 150 may be determined by considering the uniformity, collimation, and coherency of the output light, but are not limited to the illustrated positions, sizes, and forms. Also, the wavelength band of the light output from the light source 110 may be considered to optimize the input grating 120, the output grating 140, and the recycle grating of the first recuperation element 150.
A backlight unit 101 of the example embodiment may include a second recuperation element 161 including a mirror. The light incident on the second recuperation element 161 may be reflected in a single path having an reflection angle equal to an incidence angle, may reach the first recuperation element 150, and may be directed back to the inside of the light guide plate 130 by the recycle grating of the first recuperation element 150. The backlight unit 101 may output the direct propagating light Ldi and the recuperation propagating light Lre recuperated in the above path.
A backlight unit 102 of an example embodiment may differ from the backlight unit 101 of
A backlight unit 103 of the example embodiment may differ from the backlight unit 100 of
In the backlight unit 103 of the example embodiment, the mirror 170 may prevent or reduce the light loss through the second surface 130b of the light guide plate 130.
The total reflection of light inside the light guide plate 130 may occur when the incidence angle of light on the second surface 130b by the input grating 120 is greater than a total reflection critical angle. A portion of the light passing through the input grating 120 may not satisfy this condition, and this light may not be totally reflected, that is, a portion of the light reaching the second surface 130b may be lost outside the light guide plate 130 through the second surface 130b. The mirror 170 arranged on the second surface 130b may reflect light that is not totally reflected by the second surface 130b in a direction toward the output grating 140.
The output grating 140 may have a diffraction pattern for outputting the input light outside the light guide plate 130. However, some light thereof may not be output by the output grating 140 as a result of negative first-order diffraction and may reach the second surface 130b of the light guide plate 130 at an angle smaller than the total reflection critical angle, for example, in a substantially vertical incidence direction, and this light may be output and lost outside the light guide plate 130 through the second surface 130b. The mirror 170 arranged on the second surface 130b may reflect the light incident on the second surface 130b in a substantially vertical incidence direction in a direction toward the output grating 140.
In
A backlight unit 104 of the example embodiment may differ from the backlight unit 103 of
The dichroic layer 180 may reflect, back to the output grating 140, the light that is directed to the lower surface of the light guide plate 130 without being output outside the light guide plate 130 from the output grating 140. For example, the dichroic layer 180 may reflect the lights that are substantially vertically incident on the second surface 130b of the light guide plate 130 as a result of negative first-order diffraction from the output grating 140, in a direction toward the output grating 140. In
The dichroic layer 180 may be optimized for a light of a particular wavelength and may have, for example, an optimized structure for the wavelength band of the light output from the light source 110. As illustrated in
As illustrated in
The backlight unit 104 of the example embodiment including the dichroic layer 180 may exhibit a higher light efficiency than the backlight unit 103 of
The backlight unit 104 of the example embodiment may include the dichroic layer 180 instead of a mirror to maintain the overall internal reflection with little absorption at the boundary of each layer. Accordingly, the light efficiency may be improved and the luminance of the output light may be improved.
The dichroic layer 180 may be more efficient in that it may optimize the reflection of the light incident at a particular angle and a particular wavelength. For example, since the dichroic layer 180 may reflect only the light of a certain wavelength band that is vertically incident as a result of the negative first-order diffraction at the output grating 140, the light incident on the dichroic layer 180 at a different incidence angle and/or a different wavelength may not be reflected. That is, the dichroic layer 180 may be substantially transparent for this light. As such, since the thickness of each layer of the dichroic layer 180 may be set such that the light of a wavelength band output from the light source 110 may be reflected only when this light is incident at a particular angle, a higher light efficiency may be achieved for a light of a desired wavelength band and the luminance of the output light may be improved.
The dichroic layer 180 may be implemented by chemical vapor deposition, ion-beam sputtering, or magnetron sputtering.
A backlight unit 105 of the example embodiment may differ from the backlight unit 100 of
A backlight unit 10 of a related example may include a light source 11, a light guide plate 13, an input grating 12, and an output grating 14. The light guide plate 13 may include two surfaces 13a and 13b facing each other and the input grating 12 and the output grating 14 may be arranged on one surface 13a thereamong. The light guide plate 13 may include a left surface 13c and a right surface 13d facing each other, and the input grating 12 may be arranged adjacent to the left surface 13c of the light guide plate 13.
The light from the light source 11 may be incident on the input grating 12 and may be diffracted and directed to the light guide plate 13 at an angle causing total internal reflection in the light guide plate 13. The light propagating inside the light guide plate 13 may be partially diffracted at the output grating 14 and then output outside the light guide plate 13, and may be partially directed in the opposite direction. This light may be a lost light because it is output through the lower surface of the light guide plate 130, which is a surface other than the light output surface.
A light loss may also occur through the right surface 13d of the light guide plate 130. The light that propagates inside the light guide plate 13 may be partially output whenever it meets the output grating 14, and the light that is not output may continue to propagate toward the right surface 13d inside the light guide plate 130. The number of times the light meets the output grating 14 may be limited, for example, only tens of times. Also, since the efficiency of the output grating 14 may be generally very low, the output grating 14 may not output all the light input through the input grating 12. Thus, some light thereof may necessarily reach the right surface 13d and exit outside of the light guide plate 13.
As such, due to the lost light exiting through the lower surface 13b and the right surface 13d of the light guide plate 130, the light efficiency may be reduced and the luminance of the output light may be reduced.
Also, the intensity of the light propagating inside the light guide plate 13 may be reduced whenever it is incident on the output grating 14. Thus, at each successive incidence, the intensity of the light output through the output grating 14 may become lower than the intensity of the previously output light. That is, intensity of the output light from the light guide plate 13 may non-uniform and decrease in a direction away from the input grating 120 from the left side to the right side of the light guide plate 13.
Two curves of the graph are respectively the results of simulation and experiment, and the distance thereof is a distance in a direction away from the input grating 120 from the left side to the right side of the light guide plate 13. The intensity of the output light decreases with the distance, and this trend is stronger in the experimental results than in the calculated results.
As seen from the curves of the graph, the intensity distribution of the output light is different for different wavelengths. The trend of reducing the intensity of the output light according to the distance increase occurs more strongly in ascending order of red light R, green light G, and blue light B, that is, the output light is less uniform.
The trend shown in
Also, when the light to be lost is simply reflected at the edge of the light guide plate 13 and recuperated as a scattered light into the light guide plate 13, this light may become a noise light and the quality of an image formed by using this light may be degraded.
Unlike the backlight unit 10 of the related example, the backlight unit of example embodiments may include a light recuperation module and/or a dichroic layer for maintaining the coherency thereof while improving the collimation and uniformity of the output light. The backlight unit according to example embodiments may prevent or reduce the noise due to the recuperated light, and thus may provide the light capable of forming a high-quality image.
Two curves of the graph respectively relate to the backlight unit 100 of
Table 1 shows the comparison of the color-by-color efficiency of example embodiments with that of a comparative example.
In Table 1, Example Embodiment 1 relates to the backlight unit 101 of
The two example embodiments exhibit an improved efficiency over the related example. In comparison of Example Embodiment 1 with Example Embodiment 2, it can be seen that there is a slightly improved efficiency increase in Example Embodiment 2 that is the backlight unit 102 of
In the graph, Related Example 1 relates to the backlight unit 10 of
Referring to
As such, all of the backlight units of example embodiments including a light recuperation module or a dichroic layer may have an improved performance over the related examples.
Also, in the backlight unit 104 of
Hereinafter, backlight units according to example embodiments will be described with reference to
A backlight unit 106 may include a light source 110, a light guide plate 130, an input grating 120, an output grating 145, and a dichroic layer 180. The output grating 145 may include a relief pattern, for example, in a saw-tooth pattern. The output grating 145 may be arranged on the first surface 130a of the light guide plate 130 and the dichroic layer 180 may be arranged on the second surface 130b facing the first surface 130a. The light diffracted in a direction toward the second surface 130b of the light guide plate 130 without being output through the output grating 145 may be directed back to the output grating 140 by the dichroic layer 180 and output outside the light guide plate 130.
A backlight unit 107 of the example embodiment may differ from the backlight unit 106 of
In the backlight unit 107 of the example embodiment, the lower surface of the light guide plate 130, that is, the second surface 130b, may be a light output surface. The light diffracted from the output grating 145 and directed toward the second surface 130b may be output outside the light guide plate 130. The light diffracted from the output grating 145 toward the opposite side of the second surface 130b as the light output surface may be reflected from the dichroic layer 182, directed back to the second surface 130b, and output outside the light guide plate 130.
A backlight unit 108 of the example embodiment may differ from the backlight unit 107 of
The immersion layer 148 may include a polymer material and may entirely cover and smooth the relief pattern constituting the output grating 140. For example, the immersion layer 148 may be formed by applying an ultraviolet (UV)-curable polymer material and planarizing the resulting structure by using a stamp.
A backlight unit 109 of the example embodiment may be similar to the backlight unit 108 of
A backlight unit 200 of the example embodiment may include a plurality of light guide plate structures 201, 202, and 203, for example, first light guide plate structure 201, second light guide plate structure 202, and third light guide plate structure 203, arranged in a stack form, and each of the first light guide plate structure 201, the second light guide plate structure 202, and the third light guide plate structure 203 may be similar to the structure provided in the backlight unit of the above example embodiments.
The first light guide plate structure 201 may include a light guide plate 231, an input grating 221, an output grating 241, a dichroic layer 281, a first recuperation element 251, and a second recuperation element 261. A light of a first wavelength band, for example, a red light R, may be incident on the first light guide plate structure 201. The input grating 221, the output grating 241, the dichroic layer 281, the first recuperation element 251, and the second recuperation element 261 included in the first light guide plate structure 201 may have an optimized structure for the light of the first wavelength band.
The second light guide plate structure 202 may include a light guide plate 232, an input grating 222, an output grating 242, a dichroic layer 282, a first recuperation element 252, and a second recuperation element 262. A light of a second wavelength band, for example, a green light G, may be incident on the second light guide plate structure 202. The input grating 222, the output grating 242, the dichroic layer 282, the first recuperation element 252, and the second recuperation element 262 included in the second light guide plate structure 202 may have an optimized structure for the light of the second wavelength band.
The third light guide plate structure 203 may include a light guide plate 233, an input grating 223, an output grating 243, a dichroic layer 283, a first recuperation element 253, and a second recuperation element 263. A light of a third wavelength band, for example, a blue light B, may be incident on the third light guide plate structure 203. The input grating 223, the output grating 243, the dichroic layer 283, the first recuperation element 253, and the second recuperation element 263 included in the third light guide plate structure 203 may have an optimized structure for the light of the third wavelength band.
As described above, the gratings included in the first light guide plate structure 201, the second light guide plate structure 202, and the third light guide plate structure 203 may be optimized by constructing a profile required for each grating. In general, the intensity of the output light by the output grating decreases with the distance, and this trend is different for light of different wavelengths. For example, since the emission intensity of a green light and a blue light tend to decrease more greatly than that of a red light, the distribution of the diffraction efficiency in which each of the output gratings 241, 242, and 243 outputs a recuperation propagating light may be optimized to be compensated to a greater extent in the case of the blue light and the green light than in the case of the red light.
The dichroic layers 281, 282, and 283 may be manufactured by a method to reflect only desired wavelengths, i.e., a red light, a green light, and a blue light, respectively, and to be transparent for lights of other wavelengths.
This multilayered backlight unit 200 may more accurately optimize the characteristics of the grating and the dichroic layer separately in each of a plurality of layers for lights of different wavelengths, and thus, further improve the light efficiency and the uniformity of the output light.
The number of stacked layers of the illustrated backlight unit 200 is not limited to three, and for example, more light guide plate structures optimized for lights of different wavelengths and/or additional wavelengths may be used.
A display apparatus 1000 may include a backlight unit 1100 and a spatial light modulator 1500 for forming a hologram image using the light from the backlight unit 1100. Also, the display apparatus 1000 may further include a field lens 1300 for focusing the hologram image on a certain space and a controller 1700 for applying a control signal to the spatial light modulator 1500.
The backlight unit 1100 may include any one of the backlight units according to the above example embodiments, any combination thereof, or any modification thereof and is not limited to the illustrated forms.
The spatial light modulator 1500 may form a hologram image by using the light provided by the backlight unit 1100. The spatial light modulator 1500 may include a liquid crystal display (LCD) panel. The spatial light modulator 1500 may form a hologram pattern having an interference pattern for modulating an incident light. The hologram pattern may be a computer-generated hologram formed according to the control signal of the controller 1700. By the diffraction and modulation of the light incident on the spatial light modulator 1500 by the hologram pattern, a hologram image may be reproduced at a position in a certain space.
The field lens 1300 may focus the hologram image formed by the spatial light modulator 1500 on a certain space, and may include a Fresnel lens or a liquid crystal lens. The position of the field lens 1300 is not limited to the illustrated position, and for example, it may be interchanged with the position of the spatial light modulator 1500.
Also, the display apparatus 1000 may further include a beam deflector for controlling the propagation direction of a light beam output from the backlight unit 1100. The beam deflector may control the direction of the light beam two-dimensionally such that the light beam is directed toward the viewer.
In addition, the display apparatus 1000 may further include an eye tracking sensor for tracking the position of the viewer.
Since the display apparatus 1000 may include the backlight unit 1100 providing lights of relatively high efficiency and high uniformity to form images of improved image quality with low power consumption, the display apparatus 1000 may also be suitably applied to mobile devices.
Although the display apparatus 1000 has been described as a holographic display apparatus, the display apparatus 1000 is not limited thereto and may be any type of three-dimensional display apparatus or any display apparatus for forming two-dimensional images.
The above backlight unit may include the light recuperation module and/or the dichroic layer to minimize the potential loss in the light guide plate, thus improving the light efficiency and providing lights with improved uniformity and luminance.
The display apparatus including the above backlight unit may form relatively high-quality images with low power consumption.
It should be understood that example embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each example embodiment should typically be considered as available for other similar features or aspects in other embodiments.
While example embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2018113739 | Apr 2018 | RU | national |
10-2019-0018841 | Feb 2019 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5796897 | Ronan | Aug 1998 | A |
6580529 | Amitai et al. | Jun 2003 | B1 |
6750996 | Jagt et al. | Jun 2004 | B2 |
7320521 | Mihalakis | Jan 2008 | B2 |
7530693 | Mihalakis | May 2009 | B2 |
8354806 | Travis et al. | Jan 2013 | B2 |
8582206 | Travis | Nov 2013 | B2 |
8736963 | Robbins et al. | May 2014 | B2 |
8985803 | Bohn | Mar 2015 | B2 |
9164290 | Robbins et al. | Oct 2015 | B2 |
9164351 | Bohn | Oct 2015 | B2 |
9304235 | Sainiemi et al. | Apr 2016 | B2 |
9372347 | Levola et al. | Jun 2016 | B1 |
9459451 | Saarikko et al. | Oct 2016 | B2 |
9494799 | Robbins et al. | Nov 2016 | B2 |
9513480 | Saarikko et al. | Dec 2016 | B2 |
9535253 | Levola et al. | Jan 2017 | B2 |
9563269 | Travis | Feb 2017 | B2 |
9664905 | Bohn et al. | May 2017 | B2 |
9671615 | Vallius et al. | Jun 2017 | B1 |
9759913 | Saarikko et al. | Sep 2017 | B2 |
9766464 | Poon et al. | Sep 2017 | B2 |
9791696 | Woltman et al. | Oct 2017 | B2 |
9864208 | Vallius et al. | Jan 2018 | B2 |
9910276 | Vallius et al. | Mar 2018 | B2 |
9927614 | Vallius | Mar 2018 | B2 |
9946072 | Vallius | Apr 2018 | B2 |
10038840 | Vallius | Jul 2018 | B2 |
10073278 | Vallius | Sep 2018 | B2 |
10191196 | Morozov et al. | Jan 2019 | B2 |
10192358 | Robbins | Jan 2019 | B2 |
10234686 | Vallius | Mar 2019 | B2 |
10241332 | Vallius | Mar 2019 | B2 |
10534176 | Chi | Jan 2020 | B1 |
20040004767 | Song | Jan 2004 | A1 |
20040253003 | Farmer et al. | Dec 2004 | A1 |
20080137366 | Liu et al. | Jun 2008 | A1 |
20100128051 | Mizuta et al. | May 2010 | A1 |
20110242298 | Bathiche et al. | Oct 2011 | A1 |
20110242670 | Simmonds | Oct 2011 | A1 |
20110279426 | Imamura et al. | Nov 2011 | A1 |
20140176528 | Robbins | Jun 2014 | A1 |
20140240341 | Oda | Aug 2014 | A1 |
20150084928 | Wyrwas et al. | Mar 2015 | A1 |
20160077338 | Robbins et al. | Mar 2016 | A1 |
20160147003 | Morozov et al. | May 2016 | A1 |
20160231567 | Saarikko et al. | Aug 2016 | A1 |
20160313695 | Futterer | Oct 2016 | A1 |
20160327906 | Futterer | Nov 2016 | A1 |
20160351114 | Lee | Dec 2016 | A1 |
20170003505 | Vallius et al. | Jan 2017 | A1 |
20170090089 | Kim | Mar 2017 | A1 |
20170102543 | Vallius | Apr 2017 | A1 |
20170115487 | Travis | Apr 2017 | A1 |
20170255813 | Chen et al. | Sep 2017 | A1 |
20170307886 | Stenberg | Oct 2017 | A1 |
20170315346 | Tervo | Nov 2017 | A1 |
20180003994 | Grey et al. | Jan 2018 | A1 |
20180157042 | Wall | Jun 2018 | A1 |
20180172995 | Lee | Jun 2018 | A1 |
20180217305 | Valera | Aug 2018 | A1 |
20190004321 | Grey et al. | Jan 2019 | A1 |
20190113825 | Alexander | Apr 2019 | A1 |
20190265486 | Hansotte | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
101196590 | Jun 2008 | CN |
103777266 | May 2014 | CN |
203773081 | Aug 2014 | CN |
106575034 | Apr 2017 | CN |
2 936 237 | Jun 2014 | EP |
3 066 518 | May 2015 | EP |
2 887 128 | Jun 2015 | EP |
2 467 752 | Nov 2015 | EP |
3 195 045 | Mar 2016 | EP |
3 197 339 | Mar 2016 | EP |
3 014 340 | Mar 2017 | EP |
3 175 280 | Apr 2018 | EP |
2529003 | Feb 2016 | GB |
2543119 | Apr 2017 | GB |
10-2004-0039400 | May 2004 | KR |
10-2012-0127077 | Nov 2012 | KR |
10-2016-0060522 | May 2016 | KR |
10-2017-0036508 | Apr 2017 | KR |
2 419 888 | May 2011 | RU |
2 496 152 | Oct 2013 | RU |
2014 146 782 | Jun 2016 | RU |
2014100549 | Jun 2014 | WO |
2014210349 | Dec 2014 | WO |
2015041894 | Mar 2015 | WO |
2015069553 | May 2015 | WO |
2015145119 | Oct 2015 | WO |
2016020643 | Feb 2016 | WO |
2016044193 | Mar 2016 | WO |
2016048729 | Mar 2016 | WO |
2016113528 | Jul 2016 | WO |
2016130342 | Aug 2016 | WO |
2016130343 | Aug 2016 | WO |
2016130359 | Aug 2016 | WO |
2016130369 | Aug 2016 | WO |
2016198832 | Dec 2016 | WO |
2017003674 | Jan 2017 | WO |
2017003795 | Jan 2017 | WO |
2017019227 | Feb 2017 | WO |
2017019228 | Feb 2017 | WO |
2017034765 | Mar 2017 | WO |
2017062139 | Apr 2017 | WO |
2017062167 | Apr 2017 | WO |
2017074820 | May 2017 | WO |
2017083160 | May 2017 | WO |
2017087209 | May 2017 | WO |
2017095641 | Jun 2017 | WO |
2017105868 | Jun 2017 | WO |
2017116637 | Jul 2017 | WO |
2017155729 | Sep 2017 | WO |
Entry |
---|
US 9,632,316 B2, 04/2017, Levola (withdrawn) |
Communication dated Nov. 9, 2018, issued by the Russian Patent Office in counterpart Russian Application No. 2018113739. |
Number | Date | Country | |
---|---|---|---|
20190317264 A1 | Oct 2019 | US |