The present invention generally relates to a backlight assembly for a display, and more particularly, to a rearview assembly for a vehicle having a display using the inventive backlight assembly.
According to one aspect of the present invention, a backlight assembly for a display having a polarized transmission axis is provided comprising: a light source for emitting light; a first brightness enhancement film having a plurality of prismatic elements extending in a first direction, and positioned to receive light emitted from the light source, wherein the first direction extends at an angle of between about 5 degrees and about 15 degrees offset from the polarized transmission axis of the display; and a second brightness enhancement film having a plurality of prismatic elements extending in a second direction and positioned to receive light exiting the first brightness enhancement film, wherein the second direction is substantially perpendicular to the first direction.
According to another embodiment of the present invention, a display is provided comprising: a light source for emitting light; a first brightness enhancement film having a plurality of prismatic elements extending in a first direction, and positioned to receive light emitted from the light source; a second brightness enhancement film having a plurality of prismatic elements extending in a second direction and positioned to receive light exiting the first brightness enhancement film; and a display element disposed to receive light from the second brightness enhancement film, the display element having a polarized transmission axis, wherein the first direction extends at an angle of between about 5 degrees and about 15 degrees offset from the polarized transmission axis of the display element and the second direction is substantially perpendicular to the first direction.
According to another embodiment of the present invention, a rearview assembly for a vehicle is provided comprising: a housing for attachment to the vehicle; a glass element disposed in the housing; and a display disposed behind the mirror element in the housing. The display comprises: a light source for emitting light; a first brightness enhancement film having a plurality of prismatic elements extending in a first direction, and positioned to receive light emitted from the light source; a second brightness enhancement film having a plurality of prismatic elements extending in a second direction and positioned to receive light exiting the first brightness enhancement film, wherein the second direction is aligned relative to the first direction at an angle of between about 75 degrees and about 85 degrees; and a display element disposed to receive light from the second brightness enhancement film, the display element having a polarized transmission axis, wherein the first direction extends at an angle of between about 5 degrees and about 15 degrees offset from the polarized transmission axis of the display element.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The present illustrated embodiments reside primarily in combinations of method steps and apparatus components related to a backlight assembly, particularly one adapted for use in a vehicle rearview assembly. Accordingly, the apparatus components and method steps have been represented, where appropriate, by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. Further, like numerals in the description and drawings represent like elements.
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
The terms “including,” “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
Backlight assemblies for liquid crystal displays (LCDs) are known which include one or more brightness enhancement films (BEFs). A BEF is used to enhance the brightness of the display in one dimension. Thus, to enhance brightness in both dimensions of the display, a first BEF is used to enhance the brightness in the vertical direction and a second BEF is used to enhance the brightness in the horizontal direction. A BEF generally includes a plurality of parallel prismatic elements that extend one direction on one surface of a film. To enhance brightness in a vertical direction, the BEF is arranged so that its prisms extend horizontally. To enhance brightness in a horizontal direction, the BEF is arranged so that its prisms extend vertically. Thus, when enhancing the brightness in both dimensions of the display, the BEFs are arranged with their prismatic elements at a 90 degree angle relative to one another. LCDs include polarizers such that light from a backlight is polarized and the LCD element selectively transmits light from the backlight based upon the orientation of the liquid crystal molecules in the element. Light that is transmitted through the LCD element has a polarization that is aligned with the polarized transmission axis of the LCD element. For example, if the polarized transmission axis of the LCD is vertical, vertically polarized light is selectively transmitted through the LCD. Likewise, if the polarized transmission axis of the LCD is horizontal, horizontally polarized light is selectively transmitted through the LCD.
A problem occurs in certain circumstances where two BEFs are arranged with their prismatic elements aligned with respective vertical and horizontal axes of an LCD (particularly an in-plane switching (IPS) type LCD) specifically when the polarized transmission axis is either vertical or horizontal. More specifically, a cross-hatching pattern can be seen consisting of bright and dark alternating squares. The embodiments described herein reduce this problem by rotating one of the BEFs by about 5 to 15 degrees relative to the polarized transmission axis of the LCD and can further reduce the problem by rotating both the BEFs relative to the polarized transmission axis of the LCD such that the BEFs are aligned with their prismatic elements substantially perpendicular to one another.
As shown in
The glass element 12 may be an electro-optic element or an element such as a prism. One non-limiting example of an electro-optic element is an electrochromic element including an electrochromic medium, which includes at least one solvent, at least one anodic material, and at least one cathodic material. Typically, both of the anodic and cathodic materials are electroactive and at least one of them is electrochromic. It will be understood that regardless of its ordinary meaning, the term “electroactive” will be defined herein as a material that undergoes a modification in its oxidation state upon exposure to a particular electrical potential difference. Additionally, it will be understood that the term “electrochromic” will be defined herein, regardless of its ordinary meaning, as a material that exhibits a change in its extinction coefficient at one or more wavelengths upon exposure to a particular electrical potential difference. Electrochromic components, as described herein, include materials whose color or opacity are affected by electric current, such that when an electrical current is applied to the material, the color or opacity changes from a first phase to a second phase. The electrochromic component may be a single-layer, single-phase component, multi-layer component, or multi-phase component, as described in U.S. Pat. No. 5,928,572 entitled “ELECTROCHROMIC LAYER AND DEVICES COMPRISING SAME,” U.S. Pat. No. 5,998,617 entitled “ELECTROCHROMIC COMPOUNDS,” U.S. Pat. No. 6,020,987 entitled “ELECTROCHROMIC MEDIUM CAPABLE OF PRODUCING A PRE-SELECTED COLOR,” U.S. Pat. No. 6,037,471 entitled “ELECTROCHROMIC COMPOUNDS,” U.S. Pat. No. 6,141,137 entitled “ELECTROCHROMIC MEDIA FOR PRODUCING A PRESELECTED COLOR,” U.S. Pat. No. 6,241,916 entitled “ELECTROCHROMIC SYSTEM,” U.S. Pat. No. 6,193,912 entitled “NEAR INFRARED-ABSORBING ELECTROCHROMIC COMPOUNDS AND DEVICES COMPRISING SAME,” U.S. Pat. No. 6,249,369 entitled “COUPLED ELECTROCHROMIC COMPOUNDS WITH PHOTOSTABLE DICATION OXIDATION STATES,” U.S. Pat. No. 6,137,620 entitled “ELECTROCHROMIC MEDIA WITH CONCENTRATION-ENHANCED STABILITY, PROCESS FOR THE PREPARATION THEREOF AND USE IN ELECTROCHROMIC DEVICES” and U.S. Pat. No. 6,519,072 entitled “ELECTROCHROMIC DEVICE;” and International Patent Application Nos. PCT/US98/05570 entitled “ELECTROCHROMIC POLYMERIC SOLID FILMS, MANUFACTURING ELECTROCHROMIC DEVICES USING SUCH SOLID FILMS, AND PROCESSES FOR MAKING SUCH SOLID FILMS AND DEVICES,” PCT/EP98/03862 entitled “ELECTROCHROMIC POLYMER SYSTEM,” and PCT/US98/05570 entitled “ELECTROCHROMIC POLYMERIC SOLID FILMS, MANUFACTURING ELECTROCHROMIC DEVICES USING SUCH SOLID FILMS, AND PROCESSES FOR MAKING SUCH SOLID FILMS AND DEVICES,” which are all incorporated herein by reference in their entirety. The glass element 12 may also be any other element having partially reflective, partially transmissive properties. To provide electric current to the glass element 12, electrical elements are provided on opposing sides of the element to generate an electrical potential therebetween.
As shown in
The display 22 may be generally planar, with the outer edge 50 defining a front surface 78. The front surface 78 of the display 22 can be shaped to correspond to and fit within the shape of the viewing area of the rearview assembly 10. Alternatively, the display 22 may have a front surface 78 which fits within but is not complementary to the viewing area, for example, where the front surface 78 of the display 22 is generally rectangular and the front surface of the glass element 12 has a contoured outer perimeter 46. The distance between the outer edge 50 of the display 22 and the outer perimeter 46 of the glass element 12 is about 9 mm or less along at least a portion of the outer edge 50. In one embodiment, the display 22 has a viewable front surface 78 area, which is about 56 to about 70 percent of the viewing area of the glass element 12.
A glare sensor 102 may be provided in a location which receives light through the glass element 12, and which is not behind the display 22. The glare sensor 102 receives light from head lamps of a trailing vehicle, and measures information regarding the likely glare visible on the glass element 12 and communicates this information to the rearview assembly 10 so that the rearview assembly 10 can be optimized to allow viewing of the display 22 through the glass element 12. The glare sensor 102 could also be packaged at least partially within the housing 30 of the rearview assembly 10 and have a light guide which is configured to propagate light to the glare sensor 102. The glare sensor 102 could also be an imager on a rear portion of the vehicle, wherein a signal representative of the received light is communicated from the glare sensor 102 to the rearview assembly 10.
Additional details of the rearview assembly shown in
According to one example, BEFs 104 and 106 may each be a 90-50 BEF available from 3M Corporation, and display 22 may be an IPS LCD. LED light engine 100 may take various forms, such as a direct LED light engine, such as disclosed in United States Patent Application Publication No. 2009/0096937 A1 entitled “VEHICLE REARVIEW ASSEMBLY INCLUDING A DISPLAY FOR DISPLAYING VIDEO CAPTURED BY A CAMERA AND USER INSTRUCTIONS,” filed on Aug. 18, 2008, on behalf of Frederick T. Bauer et al., the entire disclosure of which is incorporated herein by reference, or an edge-illuminated LED light engine such as disclosed in U.S. Pat. No. 8,878,882 entitled “SEGMENTED EDGE-LIT BACKLIGHT ASSEMBLY FOR A DISPLAY,” the entire disclosure of which is incorporated herein by reference.
The cross-hatching may be further reduced by providing an anti-glare polarizer, such as a Nitto Denko AGT1 anti-glare polarizer, on the front surface of the display. Such an anti-glare polarizer further reduces cross-hatching without reducing the intensity of the display.
Although disclosed with respect to a display having essentially the same full size as the mirror element, the present invention may be used in displays of various sizes whether included in a rearview assembly or not.
It will be appreciated that embodiments of the invention described herein may be comprised of one or more conventional processors and unique stored program instructions that control one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of a rearview assembly 10, as described herein. The non-processor circuits may include, but are not limited to signal drivers, clock circuits, power source circuits, and/or user input devices. As such, these functions may be interpreted as steps of a method used in using or constructing a classification system. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used. Thus, the methods and means for these functions have been described herein. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein, will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the invention as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present invention. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
The above description is considered that of the preferred embodiments only. Modifications of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the claims as interpreted according to the principles of patent law, including the doctrine of equivalents.
This application claims priority to and the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/933,982, filed on Jan. 31, 2014, entitled “BACKLIGHTING ASSEMBLY FOR DISPLAY FOR REDUCING CROSS-HATCHING,” the entire disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2131888 | Harris | Oct 1938 | A |
2632040 | Rabinow | Mar 1953 | A |
2827594 | Rabinow | Mar 1958 | A |
3179845 | Kulwiec | Apr 1965 | A |
3581276 | Newman | May 1971 | A |
3663819 | Hicks et al. | May 1972 | A |
4109235 | Bouthors | Aug 1978 | A |
4139801 | Linares | Feb 1979 | A |
4151526 | Hinachi et al. | Apr 1979 | A |
4214266 | Myers | Jul 1980 | A |
4236099 | Rosenblum | Nov 1980 | A |
4257703 | Goodrich | Mar 1981 | A |
4258979 | Mahin | Mar 1981 | A |
4277804 | Robison | Jul 1981 | A |
4286308 | Wolff | Aug 1981 | A |
4310851 | Pierrat | Jan 1982 | A |
4357558 | Massoni et al. | Nov 1982 | A |
4376909 | Tagami et al. | Mar 1983 | A |
4479173 | Rumpakis | Oct 1984 | A |
4499451 | Suzuki et al. | Feb 1985 | A |
4599544 | Martin | Jul 1986 | A |
4638287 | Umebayashi et al. | Jan 1987 | A |
4645975 | Meitzler et al. | Feb 1987 | A |
4665321 | Chang et al. | May 1987 | A |
4665430 | Hiroyasu | May 1987 | A |
4692798 | Seko et al. | Sep 1987 | A |
4716298 | Etoh | Dec 1987 | A |
4727290 | Smith et al. | Feb 1988 | A |
4740838 | Mase et al. | Apr 1988 | A |
4768135 | Kretschmer et al. | Aug 1988 | A |
4862037 | Farber et al. | Aug 1989 | A |
4891559 | Matsumoto et al. | Jan 1990 | A |
4910591 | Petrossian et al. | Mar 1990 | A |
4930742 | Schofield et al. | Jun 1990 | A |
4934273 | Endriz | Jun 1990 | A |
4967319 | Seko | Oct 1990 | A |
5005213 | Hanson et al. | Apr 1991 | A |
5008946 | Ando | Apr 1991 | A |
5027200 | Petrossian et al. | Jun 1991 | A |
5036437 | Macks | Jul 1991 | A |
5072154 | Chen | Dec 1991 | A |
5086253 | Lawler | Feb 1992 | A |
5096287 | Kakinami et al. | Mar 1992 | A |
5121200 | Choi et al. | Jun 1992 | A |
5124549 | Michaels et al. | Jun 1992 | A |
5166681 | Bottesch et al. | Nov 1992 | A |
5182502 | Slotkowski et al. | Jan 1993 | A |
5187383 | Taccetta et al. | Feb 1993 | A |
5197562 | Kakinami et al. | Mar 1993 | A |
5230400 | Kakainami et al. | Jul 1993 | A |
5235178 | Hegyi | Aug 1993 | A |
5243417 | Pollard | Sep 1993 | A |
5289321 | Secor | Feb 1994 | A |
5296924 | Blancard et al. | Mar 1994 | A |
5304980 | Maekawa | Apr 1994 | A |
5329206 | Slotkowski et al. | Jul 1994 | A |
5347261 | Adell | Sep 1994 | A |
5347459 | Greenspan et al. | Sep 1994 | A |
5355146 | Chiu et al. | Oct 1994 | A |
5379104 | Takao | Jan 1995 | A |
5381309 | Borchardt | Jan 1995 | A |
5386285 | Asayama | Jan 1995 | A |
5396054 | Krichever et al. | Mar 1995 | A |
5402170 | Parulski et al. | Mar 1995 | A |
5408357 | Beukema | Apr 1995 | A |
5414461 | Kishi et al. | May 1995 | A |
5416318 | Hegyi | May 1995 | A |
5418610 | Fischer | May 1995 | A |
5424952 | Asayama | Jun 1995 | A |
5426294 | Kobayashi et al. | Jun 1995 | A |
5428464 | Silverbrook | Jun 1995 | A |
5430450 | Holmes | Jul 1995 | A |
5434407 | Bauer et al. | Jul 1995 | A |
5451822 | Bechtel et al. | Sep 1995 | A |
5452004 | Roberts | Sep 1995 | A |
5469298 | Suman et al. | Nov 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5475441 | Parulski et al. | Dec 1995 | A |
5475494 | Nishida et al. | Dec 1995 | A |
5481268 | Higgins | Jan 1996 | A |
5483346 | Butzer | Jan 1996 | A |
5483453 | Uemura et al. | Jan 1996 | A |
5485155 | Hibino | Jan 1996 | A |
5485378 | Franke et al. | Jan 1996 | A |
5488496 | Pine | Jan 1996 | A |
5508592 | Lapatovich et al. | Apr 1996 | A |
5515448 | Nishitani | May 1996 | A |
5523811 | Wada et al. | Jun 1996 | A |
5530421 | Marshall et al. | Jun 1996 | A |
5535144 | Kise | Jul 1996 | A |
5537003 | Bechtel et al. | Jul 1996 | A |
5541590 | Nishio | Jul 1996 | A |
5541724 | Hoashi | Jul 1996 | A |
5550677 | Schofield et al. | Aug 1996 | A |
5554912 | Thayer et al. | Sep 1996 | A |
5574443 | Hsieh | Nov 1996 | A |
5574463 | Shirai et al. | Nov 1996 | A |
5576975 | Sasaki et al. | Nov 1996 | A |
5587929 | League et al. | Dec 1996 | A |
5592146 | Kover, Jr. et al. | Jan 1997 | A |
5602542 | Windmann et al. | Feb 1997 | A |
5614788 | Mullins et al. | Mar 1997 | A |
5615023 | Yang | Mar 1997 | A |
5617085 | Tsutsumi et al. | Apr 1997 | A |
5621460 | Hatlestad et al. | Apr 1997 | A |
5634709 | Iwama | Jun 1997 | A |
5642238 | Sala | Jun 1997 | A |
5646614 | Abersfelder et al. | Jul 1997 | A |
5650765 | Park | Jul 1997 | A |
5660454 | Mori et al. | Aug 1997 | A |
5666028 | Bechtel et al. | Sep 1997 | A |
5670935 | Schofield et al. | Sep 1997 | A |
5680123 | Lee | Oct 1997 | A |
5684473 | Hibino et al. | Nov 1997 | A |
5707129 | Kobayashi | Jan 1998 | A |
5708410 | Blank et al. | Jan 1998 | A |
5708857 | Ishibashi | Jan 1998 | A |
5710565 | Shirai et al. | Jan 1998 | A |
5714751 | Chen | Feb 1998 | A |
5715093 | Schierbeek et al. | Feb 1998 | A |
5729194 | Spears et al. | Mar 1998 | A |
5736816 | Strenke et al. | Apr 1998 | A |
5745050 | Nakagawa | Apr 1998 | A |
5751211 | Shirai et al. | May 1998 | A |
5751832 | Panter et al. | May 1998 | A |
5754099 | Nishimura et al. | May 1998 | A |
5760828 | Cortes | Jun 1998 | A |
5764139 | Nojima et al. | Jun 1998 | A |
5767793 | Agravante et al. | Jun 1998 | A |
5781105 | Bitar et al. | Jul 1998 | A |
5786787 | Eriksson et al. | Jul 1998 | A |
5793308 | Rosinski et al. | Aug 1998 | A |
5793420 | Schmidt | Aug 1998 | A |
5796094 | Schofield et al. | Aug 1998 | A |
5798727 | Shirai et al. | Aug 1998 | A |
5811888 | Hsieh | Sep 1998 | A |
5812321 | Schierbeek et al. | Sep 1998 | A |
5837994 | Stam et al. | Nov 1998 | A |
5841126 | Fossum et al. | Nov 1998 | A |
5844505 | Van Ryzin | Dec 1998 | A |
5845000 | Breed et al. | Dec 1998 | A |
5850176 | Kinoshita et al. | Dec 1998 | A |
5867214 | Anderson et al. | Feb 1999 | A |
5877897 | Schofield et al. | Mar 1999 | A |
5883739 | Ashihara et al. | Mar 1999 | A |
5896119 | Evanicky et al. | Apr 1999 | A |
5904729 | Ruzicka | May 1999 | A |
5905457 | Rashid | May 1999 | A |
5912534 | Benedict | Jun 1999 | A |
5923027 | Stam et al. | Jul 1999 | A |
5935613 | Benham et al. | Aug 1999 | A |
5940011 | Agravante et al. | Aug 1999 | A |
5942853 | Piscart | Aug 1999 | A |
5949331 | Schofield et al. | Sep 1999 | A |
5956079 | Ridgley | Sep 1999 | A |
5956181 | Lin | Sep 1999 | A |
5959555 | Furuta | Sep 1999 | A |
5990469 | Bechtel et al. | Nov 1999 | A |
6008486 | Stam et al. | Dec 1999 | A |
6009359 | El-Hakim et al. | Dec 1999 | A |
6018308 | Shirai | Jan 2000 | A |
6025872 | Ozaki et al. | Feb 2000 | A |
6046766 | Sakata | Apr 2000 | A |
6049171 | Stam et al. | Apr 2000 | A |
6060989 | Gehlot | May 2000 | A |
6061002 | Weber et al. | May 2000 | A |
6067111 | Hahn et al. | May 2000 | A |
6072391 | Suzuki et al. | Jun 2000 | A |
6078355 | Zengel | Jun 2000 | A |
6097023 | Schofield et al. | Aug 2000 | A |
6102546 | Carter | Aug 2000 | A |
6106121 | Buckley et al. | Aug 2000 | A |
6111498 | Jobes et al. | Aug 2000 | A |
6115651 | Cruz | Sep 2000 | A |
6122597 | Saneyoshi et al. | Sep 2000 | A |
6128576 | Nishimoto et al. | Oct 2000 | A |
6130421 | Bechtel et al. | Oct 2000 | A |
6130448 | Bauer et al. | Oct 2000 | A |
6140933 | Bugno et al. | Oct 2000 | A |
6144158 | Beam | Nov 2000 | A |
6151065 | Steed et al. | Nov 2000 | A |
6151539 | Bergholz et al. | Nov 2000 | A |
6154149 | Tychkowski et al. | Nov 2000 | A |
6157294 | Urai et al. | Dec 2000 | A |
6166628 | Andreas | Dec 2000 | A |
6166698 | Turnbull et al. | Dec 2000 | A |
6167755 | Damson et al. | Jan 2001 | B1 |
6172600 | Kakinami et al. | Jan 2001 | B1 |
6172601 | Wada et al. | Jan 2001 | B1 |
6175300 | Kendrick | Jan 2001 | B1 |
6184781 | Ramakesavan | Feb 2001 | B1 |
6185492 | Kagawa et al. | Feb 2001 | B1 |
6191704 | Takenaga et al. | Feb 2001 | B1 |
6200010 | Anders | Mar 2001 | B1 |
6218934 | Regan | Apr 2001 | B1 |
6222447 | Schofield et al. | Apr 2001 | B1 |
6249214 | Kashiwazaki | Jun 2001 | B1 |
6250766 | Strumolo et al. | Jun 2001 | B1 |
6255639 | Stam et al. | Jul 2001 | B1 |
6259475 | Ramachandran et al. | Jul 2001 | B1 |
6265968 | Betzitza et al. | Jul 2001 | B1 |
6268803 | Gunderson et al. | Jul 2001 | B1 |
6269308 | Kodaka et al. | Jul 2001 | B1 |
6281632 | Stam et al. | Aug 2001 | B1 |
6281804 | Haller et al. | Aug 2001 | B1 |
6289332 | Menig et al. | Sep 2001 | B2 |
6300879 | Regan et al. | Oct 2001 | B1 |
6304173 | Pala et al. | Oct 2001 | B2 |
6313892 | Gleckman | Nov 2001 | B2 |
6317057 | Lee | Nov 2001 | B1 |
6320612 | Young | Nov 2001 | B1 |
6324295 | Valery et al. | Nov 2001 | B1 |
6329925 | Skiver et al. | Dec 2001 | B1 |
6330511 | Ogura et al. | Dec 2001 | B2 |
6335680 | Matsuoka | Jan 2002 | B1 |
6344805 | Yasui et al. | Feb 2002 | B1 |
6348858 | Weis et al. | Feb 2002 | B2 |
6349782 | Sekiya et al. | Feb 2002 | B1 |
6356206 | Takenaga et al. | Mar 2002 | B1 |
6356376 | Tonar et al. | Mar 2002 | B1 |
6357883 | Strumolo et al. | Mar 2002 | B1 |
6363326 | Scully | Mar 2002 | B1 |
6369701 | Yoshida et al. | Apr 2002 | B1 |
6379013 | Bechtel et al. | Apr 2002 | B1 |
6396040 | Hill | May 2002 | B1 |
6396397 | Bos et al. | May 2002 | B1 |
6403942 | Stam | Jun 2002 | B1 |
6408247 | Ichikawa et al. | Jun 2002 | B1 |
6412959 | Tseng | Jul 2002 | B1 |
6415230 | Maruko et al. | Jul 2002 | B1 |
6421081 | Markus | Jul 2002 | B1 |
6424272 | Gutta et al. | Jul 2002 | B1 |
6424273 | Gutta et al. | Jul 2002 | B1 |
6424892 | Matsuoka | Jul 2002 | B1 |
6428172 | Hutzel et al. | Aug 2002 | B1 |
6433680 | Ho | Aug 2002 | B1 |
6437688 | Kobayashi | Aug 2002 | B1 |
6438491 | Farmer | Aug 2002 | B1 |
6441872 | Ho | Aug 2002 | B1 |
6442465 | Breed et al. | Aug 2002 | B2 |
6443585 | Saccomanno | Sep 2002 | B1 |
6443602 | Tanabe et al. | Sep 2002 | B1 |
6447128 | Lang et al. | Sep 2002 | B1 |
6452533 | Yamabuchi et al. | Sep 2002 | B1 |
6463369 | Sadano et al. | Oct 2002 | B2 |
6465962 | Fu et al. | Oct 2002 | B1 |
6466701 | Ejiri et al. | Oct 2002 | B1 |
6469739 | Bechtel et al. | Oct 2002 | B1 |
6472977 | Pochmuller | Oct 2002 | B1 |
6473001 | Blum | Oct 2002 | B1 |
6476731 | Miki et al. | Nov 2002 | B1 |
6476855 | Yamamoto | Nov 2002 | B1 |
6483429 | Yasui et al. | Nov 2002 | B1 |
6483438 | DeLine et al. | Nov 2002 | B2 |
6487500 | Lemelson et al. | Nov 2002 | B2 |
6491416 | Strazzanti | Dec 2002 | B1 |
6498620 | Schofield et al. | Dec 2002 | B2 |
6501387 | Skiver et al. | Dec 2002 | B2 |
6507779 | Breed et al. | Jan 2003 | B2 |
6515581 | Ho | Feb 2003 | B1 |
6515597 | Wada et al. | Feb 2003 | B1 |
6520667 | Mousseau | Feb 2003 | B1 |
6522969 | Kannonji | Feb 2003 | B2 |
6542085 | Yang | Apr 2003 | B1 |
6542182 | Chutorash | Apr 2003 | B1 |
6545598 | De Villeroche | Apr 2003 | B1 |
6550943 | Strazzanti | Apr 2003 | B2 |
6553130 | Lemelson et al. | Apr 2003 | B1 |
6558026 | Strazzanti | May 2003 | B2 |
6559761 | Miller et al. | May 2003 | B1 |
6572233 | Northman et al. | Jun 2003 | B1 |
6575643 | Takahashi | Jun 2003 | B2 |
6580373 | Ohashi | Jun 2003 | B1 |
6581007 | Hasegawa et al. | Jun 2003 | B2 |
6583730 | Lang et al. | Jun 2003 | B2 |
6587573 | Stam et al. | Jul 2003 | B1 |
6591192 | Okamura et al. | Jul 2003 | B2 |
6594583 | Ogura et al. | Jul 2003 | B2 |
6594614 | Studt et al. | Jul 2003 | B2 |
6611202 | Schofield et al. | Aug 2003 | B2 |
6611227 | Nebiyeloul-Kifle | Aug 2003 | B1 |
6611610 | Stam et al. | Aug 2003 | B1 |
6611759 | Brosche | Aug 2003 | B2 |
6614387 | Deadman | Sep 2003 | B1 |
6616764 | Kramer et al. | Sep 2003 | B2 |
6617564 | Ockerse et al. | Sep 2003 | B2 |
6618672 | Sasaki et al. | Sep 2003 | B2 |
6630888 | Lang et al. | Oct 2003 | B2 |
6631316 | Stam et al. | Oct 2003 | B2 |
6636258 | Strumolo | Oct 2003 | B2 |
6642840 | Lang et al. | Nov 2003 | B2 |
6642851 | Deline et al. | Nov 2003 | B2 |
6648477 | Hutzel et al. | Nov 2003 | B2 |
6665592 | Kodama | Dec 2003 | B2 |
6670207 | Roberts | Dec 2003 | B1 |
6670910 | Delcheccolo et al. | Dec 2003 | B2 |
6674370 | Rodewald et al. | Jan 2004 | B2 |
6675075 | Engelsberg et al. | Jan 2004 | B1 |
6677986 | Pöchmüller | Jan 2004 | B1 |
6683539 | Trajkovic et al. | Jan 2004 | B2 |
6683969 | Nishigaki et al. | Jan 2004 | B1 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6690413 | Moore | Feb 2004 | B1 |
6693517 | McCarty et al. | Feb 2004 | B2 |
6693518 | Kumata | Feb 2004 | B2 |
6693519 | Keirstead | Feb 2004 | B2 |
6693524 | Payne | Feb 2004 | B1 |
6717610 | Bos et al. | Apr 2004 | B1 |
6727808 | Uselmann et al. | Apr 2004 | B1 |
6727844 | Zimmermann et al. | Apr 2004 | B1 |
6731332 | Yasui et al. | May 2004 | B1 |
6734807 | King | May 2004 | B2 |
6737964 | Samman et al. | May 2004 | B2 |
6738088 | Uskolovsky et al. | May 2004 | B1 |
6744353 | Sjonell | Jun 2004 | B2 |
6746122 | Knox | Jun 2004 | B2 |
6768566 | Walker | Jul 2004 | B2 |
6772057 | Breed et al. | Aug 2004 | B2 |
6774988 | Stam et al. | Aug 2004 | B2 |
6816145 | Evanicky | Nov 2004 | B1 |
6846098 | Bourdelais et al. | Jan 2005 | B2 |
6847487 | Burgner | Jan 2005 | B2 |
6853413 | Larson | Feb 2005 | B2 |
6861809 | Stam | Mar 2005 | B2 |
6902307 | Strazzanti | Jun 2005 | B2 |
6912001 | Okamoto et al. | Jun 2005 | B2 |
6913375 | Strazzanti | Jul 2005 | B2 |
6923080 | Dobler et al. | Aug 2005 | B1 |
6930737 | Weindorf et al. | Aug 2005 | B2 |
6934080 | Saccomanno et al. | Aug 2005 | B2 |
6946978 | Schofield | Sep 2005 | B2 |
7012543 | DeLine et al. | Mar 2006 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7046448 | Burgner | May 2006 | B2 |
7175291 | Li | Feb 2007 | B1 |
7255465 | DeLine et al. | Aug 2007 | B2 |
7262406 | Heslin et al. | Aug 2007 | B2 |
7265342 | Heslin et al. | Sep 2007 | B2 |
7285903 | Cull et al. | Oct 2007 | B2 |
7292208 | Park et al. | Nov 2007 | B1 |
7311428 | DeLine et al. | Dec 2007 | B2 |
7321112 | Stam et al. | Jan 2008 | B2 |
7360932 | Uken et al. | Apr 2008 | B2 |
7417221 | Creswick et al. | Aug 2008 | B2 |
7446650 | Scholfield et al. | Nov 2008 | B2 |
7467883 | DeLine et al. | Dec 2008 | B2 |
7468651 | DeLine et al. | Dec 2008 | B2 |
7505047 | Yoshimura | Mar 2009 | B2 |
7533998 | Schofield et al. | May 2009 | B2 |
7548291 | Lee et al. | Jun 2009 | B2 |
7565006 | Stam et al. | Jul 2009 | B2 |
7567291 | Bechtel et al. | Jul 2009 | B2 |
7579940 | Schofield et al. | Aug 2009 | B2 |
7653215 | Stam | Jan 2010 | B2 |
7658521 | DeLine et al. | Feb 2010 | B2 |
7683326 | Stam et al. | Mar 2010 | B2 |
7711479 | Taylor et al. | May 2010 | B2 |
7719408 | DeWard et al. | May 2010 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7815326 | Blank et al. | Oct 2010 | B2 |
7877175 | Higgins-Luthman | Jan 2011 | B2 |
7881839 | Stam et al. | Feb 2011 | B2 |
7888629 | Heslin et al. | Feb 2011 | B2 |
7914188 | DeLine et al. | Mar 2011 | B2 |
7972045 | Schofield | Jul 2011 | B2 |
7994471 | Heslin et al. | Aug 2011 | B2 |
8031225 | Watanabe et al. | Oct 2011 | B2 |
8045760 | Stam et al. | Oct 2011 | B2 |
8059235 | Utsumi et al. | Nov 2011 | B2 |
8063753 | DeLine et al. | Nov 2011 | B2 |
8090153 | Schofield et al. | Jan 2012 | B2 |
8100568 | DeLine et al. | Jan 2012 | B2 |
8116929 | Higgins-Luthman | Feb 2012 | B2 |
8120652 | Bechtel et al. | Feb 2012 | B2 |
8142059 | Higgins-Luthman et al. | Mar 2012 | B2 |
8162518 | Schofield | Apr 2012 | B2 |
8201800 | Filipiak | Jun 2012 | B2 |
8203433 | Deuber et al. | Jun 2012 | B2 |
8217830 | Lynam | Jul 2012 | B2 |
8222588 | Schofield et al. | Jul 2012 | B2 |
8237909 | Ostreko et al. | Aug 2012 | B2 |
8258433 | Byers et al. | Sep 2012 | B2 |
8282226 | Blank et al. | Oct 2012 | B2 |
8325028 | Schofield et al. | Dec 2012 | B2 |
8482683 | Hwang et al. | Jul 2013 | B2 |
20010019356 | Takeda et al. | Sep 2001 | A1 |
20010022616 | Rademacher et al. | Sep 2001 | A1 |
20010026316 | Senatore | Oct 2001 | A1 |
20010045981 | Gloger et al. | Nov 2001 | A1 |
20020040962 | Schofield et al. | Apr 2002 | A1 |
20020044065 | Quist et al. | Apr 2002 | A1 |
20020191127 | Roberts et al. | Dec 2002 | A1 |
20030002165 | Mathias et al. | Jan 2003 | A1 |
20030007261 | Hutzel et al. | Jan 2003 | A1 |
20030016125 | Lang et al. | Jan 2003 | A1 |
20030016287 | Nakayama et al. | Jan 2003 | A1 |
20030025596 | Lang et al. | Feb 2003 | A1 |
20030025597 | Schofield | Feb 2003 | A1 |
20030030546 | Tseng | Feb 2003 | A1 |
20030030551 | Ho | Feb 2003 | A1 |
20030030724 | Okamoto | Feb 2003 | A1 |
20030035050 | Mizusawa | Feb 2003 | A1 |
20030043269 | Park | Mar 2003 | A1 |
20030052969 | Satoh et al. | Mar 2003 | A1 |
20030058338 | Kawauchi et al. | Mar 2003 | A1 |
20030067383 | Yang | Apr 2003 | A1 |
20030076415 | Strumolo | Apr 2003 | A1 |
20030080877 | Takagi et al. | May 2003 | A1 |
20030085806 | Samman et al. | May 2003 | A1 |
20030088361 | Sekiguchi | May 2003 | A1 |
20030090568 | Pico | May 2003 | A1 |
20030090569 | Poechmueller | May 2003 | A1 |
20030090570 | Takagi et al. | May 2003 | A1 |
20030098908 | Misaiji et al. | May 2003 | A1 |
20030103141 | Bechtel et al. | Jun 2003 | A1 |
20030103142 | Hitomi et al. | Jun 2003 | A1 |
20030117522 | Okada | Jun 2003 | A1 |
20030122929 | Minaudo et al. | Jul 2003 | A1 |
20030122930 | Schofield et al. | Jul 2003 | A1 |
20030133014 | Mendoza | Jul 2003 | A1 |
20030137586 | Lewellen | Jul 2003 | A1 |
20030141965 | Gunderson et al. | Jul 2003 | A1 |
20030146831 | Berberich et al. | Aug 2003 | A1 |
20030169158 | Paul, Jr. | Sep 2003 | A1 |
20030179293 | Oizumi | Sep 2003 | A1 |
20030202096 | Kim | Oct 2003 | A1 |
20030202357 | Strazzanti | Oct 2003 | A1 |
20030214576 | Koga | Nov 2003 | A1 |
20030214584 | Ross, Jr. | Nov 2003 | A1 |
20030214733 | Fujikawa et al. | Nov 2003 | A1 |
20030222793 | Tanaka et al. | Dec 2003 | A1 |
20030222983 | Nobori et al. | Dec 2003 | A1 |
20030227546 | Hilborn et al. | Dec 2003 | A1 |
20040004541 | Hong | Jan 2004 | A1 |
20040027695 | Lin | Feb 2004 | A1 |
20040032321 | McMahon et al. | Feb 2004 | A1 |
20040036768 | Green | Feb 2004 | A1 |
20040051634 | Schofield et al. | Mar 2004 | A1 |
20040056955 | Berberich et al. | Mar 2004 | A1 |
20040057131 | Hutzel et al. | Mar 2004 | A1 |
20040064241 | Sekiguchi | Apr 2004 | A1 |
20040066285 | Sekiguchi | Apr 2004 | A1 |
20040075603 | Kodama | Apr 2004 | A1 |
20040080404 | White | Apr 2004 | A1 |
20040080431 | White | Apr 2004 | A1 |
20040085196 | Miller et al. | May 2004 | A1 |
20040090314 | Iwamoto | May 2004 | A1 |
20040090317 | Rothkop | May 2004 | A1 |
20040096082 | Nakai et al. | May 2004 | A1 |
20040098196 | Sekiguchi | May 2004 | A1 |
20040107030 | Nishira et al. | Jun 2004 | A1 |
20040107617 | Shoen et al. | Jun 2004 | A1 |
20040109060 | Ishii | Jun 2004 | A1 |
20040114039 | Ishikura | Jun 2004 | A1 |
20040119668 | Homma et al. | Jun 2004 | A1 |
20040125905 | Vlasenko et al. | Jul 2004 | A1 |
20040202001 | Roberts et al. | Oct 2004 | A1 |
20050140855 | Utsumi | Jun 2005 | A1 |
20050237440 | Sugimura et al. | Oct 2005 | A1 |
20060007550 | Tonar et al. | Jan 2006 | A1 |
20060115759 | Kim et al. | Jun 2006 | A1 |
20060139953 | Chou et al. | Jun 2006 | A1 |
20060158899 | Ayabe et al. | Jul 2006 | A1 |
20070171037 | Schofield et al. | Jul 2007 | A1 |
20080068520 | Minikey, Jr. et al. | Mar 2008 | A1 |
20080192132 | Bechtel et al. | Aug 2008 | A1 |
20080247192 | Hoshi et al. | Oct 2008 | A1 |
20080294315 | Breed | Nov 2008 | A1 |
20090015736 | Weller et al. | Jan 2009 | A1 |
20090141516 | Wu et al. | Jun 2009 | A1 |
20100201896 | Ostreko et al. | Aug 2010 | A1 |
20130028473 | Hilldore et al. | Jan 2013 | A1 |
20130279014 | Fish, Jr. et al. | Oct 2013 | A1 |
20140347488 | Tazaki et al. | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
0513476 | Nov 1992 | EP |
0899157 | Oct 2004 | EP |
2338363 | Dec 1999 | GB |
1178693 | Mar 1999 | JP |
2005148119 | Jun 2005 | JP |
2005327600 | Nov 2005 | JP |
2008139819 | Jun 2008 | JP |
9621581 | Jul 1996 | WO |
2007103573 | Sep 2007 | WO |
2010090964 | Aug 2010 | WO |
Entry |
---|
Palalau et al., “FPD Evaluation for Automotive Application,” Proceedings of the Vehicle Display Symposium, Nov. 2, 1995, pp. 97-103, Society for Information Display, Detroit Chapter, Santa Ana, CA. |
Adler, “A New Automotive AMLCD Module,” Proceedings of the Vehicle Display Symposium, Nov. 2, 1995, pp. 67-71, Society for Information Display, Detroit Chapter, Santa Ana, CA. |
Sayer, et al., “In-Vehicle Displays for Crash Avoidance and Navigation Systems,”Proceedings of the Vehicle Display Symposium, Sep. 18, 1996, pp. 39-42, Society for Information Display, Detroit Chapter, Santa Ana, CA. |
Knoll, et al., “Application of Graphic Displays in Automobiles,” SID 87 Digest, 1987, pp. 41-44, 5A.2. |
Terada, et al., “Development of Central Information Display of Automotive Application,” SID 89 Digest, 1989, pp. 192-195, Society for Information Display, Detroit Center, Santa Ana, CA. |
Thomsen, et al., “AMLCD Design Considerations for Avionics and Vetronics Applications,” Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium, Sep. 9-10, 1998, pp. 139-145, Society for Information Display, Metropolitan Detroit Chapter, CA. |
Knoll, et al., “Conception of an Integrated Driver Information System,” SID International Symposium Digest of Technical Papers, 1990, pp. 126-129, Society for Information Display, Detroit Center, Santa Ana, CA. |
Vincen, “An Analysis of Direct-View FPDs for Automotive Multi-Media Applications,”Proceedings of the 6th Annual Strategic and Technical Symposium “Vehicular Applications of Displays and Microsensors,” Sep. 22-23, 1999, pp. 39-46, Society for Information Display, Metropolitan Detroit Chapter, San Jose, CA. |
Zuk, et al., “Flat Panel Display Applications in Agriculture Equipment,” Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium, Sep. 9-10, 1998, pp. 125-130, Society for Information Display, Metropolitan Detroit Chapter, CA. |
Vijan, et al., “A 1.7-Mpixel Full-Color Diode Driven AM-LCD,” SID International Symposium, 1990, pp. 530-533, Society for Information Display, Playa del Rey, CA. |
Vincen, “The Automotive Challenge to Active Matrix LCD Technology,” Proceedings of the Vehicle Display Symposium, 1996, pp. 17-21, Society for Information Display, Detroit Center, Santa Ana, CA. |
Corsi, et al., “Reconfigurable Displays Used as Primary Automotive Instrumentation,” SAE Technical Paper Series, 1989, pp. 13-18, Society of Automotive Engineers, Inc., Warrendale, PA. |
Schumacher, “Automotive Display Trends,” SID 96 Digest, 1997, pp. 1-6, Delco Electronics Corp., Kokomo, IN. |
Knoll, “The Use of Displays in Automotive Applications,” Journal of the SID 5/3 1997, pp. 165-172, 315-316, Stuttgart, Germany. |
Donofrio, “Looking Beyond the Dashboard,” SID 2002, pp. 30-34, Ann Arbor, MI. |
Stone, “Automotive Display Specification,” Proceedings of the Vehicle Display Symposium, 1995, pp. 93-96, Society for Information Display, Detroit Center, Santa Ana, CA. |
Number | Date | Country | |
---|---|---|---|
20150219967 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61933982 | Jan 2014 | US |