Backlogging I/O metadata utilizing counters to monitor write acknowledgements and no acknowledgements

Information

  • Patent Grant
  • 9910621
  • Patent Number
    9,910,621
  • Date Filed
    Monday, September 29, 2014
    10 years ago
  • Date Issued
    Tuesday, March 6, 2018
    6 years ago
Abstract
In one aspect, a method includes receiving an I/O, incrementing a first counter in an active data structure in a backlog at a splitter after receiving the I/O, storing I/O metadata of the I/O in the active data structure, incrementing a second counter in the active data structure or a passive data structure in the backlog if the I/O was written to a storage array and received by the data protection appliance and incrementing a third counter in the active data structure or the passive data structure if either the I/O was not written to a storage array or not received by the data protection appliance.
Description
BACKGROUND

Computer data is vital to today's organizations and a significant part of protection against disasters is focused on data protection. As solid-state memory has advanced to the point where cost of memory has become a relatively insignificant factor, organizations can afford to operate with systems that store and process terabytes of data.


Conventional data protection systems include tape backup drives, for storing organizational production site data on a periodic basis. Another conventional data protection system uses data replication, by creating a copy of production site data of an organization on a secondary backup storage system, and updating the backup with changes. The backup storage system may be situated in the same physical location as the production storage system, or in a physically remote location. Data replication systems generally operate either at the application level, at the file system level, or at the data block level.


SUMMARY

In one aspect, a method includes receiving an I/O, incrementing a first counter in an active data structure in a backlog at a splitter after receiving the I/O, storing I/O metadata of the I/O in the active data structure, incrementing a second counter in the active data structure or a passive data structure in the backlog if the I/O was written to a storage array and received by the data protection appliance and incrementing a third counter in the active data structure or the passive data structure if either the I/O was not written to a storage array or not received by the data protection appliance.


In another aspect, an apparatus includes electronic hardware circuitry configured to receive an I/O, increment a first counter in an active data structure in a backlog at a splitter after receiving the I/O, store I/O metadata of the I/O in the active data structure, increment a second counter in the active data structure or a passive data structure in the backlog if the I/O was written to a storage array and received by the data protection appliance and increment a third counter in the active data structure or the passive data structure if either the I/O was not written to a storage array or not received by the data protection appliance.


In a further aspect, an article includes a non-transitory computer-readable medium that stores computer-executable instructions. The instructions cause a machine to receive an I/O, increment a first counter in an active data structure in a backlog at a splitter after receiving the I/O, store I/O metadata of the I/O in the active data structure, increment a second counter in the active data structure or a passive data structure in the backlog if the I/O was written to a storage array and received by the data protection appliance and increment a third counter in the active data structure or the passive data structure if either the I/O was not written to a storage array or not received by the data protection appliance.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of an example of a data protection system.



FIG. 2 is an illustration of an example of a journal history of write transactions for a storage system.



FIG. 3 is a simplified block diagram of another example of the data protection system.



FIG. 4 is a simplified block diagram of an I/O metadata backlog.



FIG. 5 is a flowchart of an example of a process to handle new I/Os using an I/O metadata backlog.



FIG. 6 is a flowchart of an example of a process to record success or failure of I/Os.



FIG. 7 is an example of a process to handle the I/O metadata backlog for successful I/Os.



FIG. 8 is an example of a process to handle the I/O metadata backlog for unsuccessful I/Os.



FIG. 9 is a simplified block diagram of an example of a computer on which any of the processes of FIGS. 5 to 8 may be implemented.





DETAILED DESCRIPTION

The following definitions may be useful in understanding the specification and claims.


BACKUP SITE—a facility where replicated production site data is stored; the backup site may be located in a remote site or at the same location as the production site;


BOOKMARK—a bookmark is metadata information stored in a replication journal which indicates a point in time.


DATA PROTECTION APPLIANCE (DPA)—a computer or a cluster of computers responsible for data protection services including inter alia data replication of a storage system, and journaling of I/O requests issued by a host computer to the storage system;


HOST—at least one computer or networks of computers that runs at least one data processing application that issues I/O requests to one or more storage systems; a host is an initiator with a SAN;


HOST DEVICE—an internal interface in a host, to a logical storage unit;


IMAGE—a copy of a logical storage unit at a specific point in time;


INITIATOR—a node in a SAN that issues I/O requests;


I/O REQUEST—an input/output request (sometimes referred to as an I/O), which may be a read I/O request (sometimes referred to as a read request or a read) or a write I/O request (sometimes referred to as a write request or a write);


JOURNAL—a record of write transactions issued to a storage system; used to maintain a duplicate storage system, and to roll back the duplicate storage system to a previous point in time;


LOGICAL UNIT—a logical entity provided by a storage system for accessing data from the storage system. The logical disk may be a physical logical unit or a virtual logical unit;


LUN—a logical unit number for identifying a logical unit;


PHYSICAL LOGICAL UNIT—a physical entity, such as a disk or an array of disks, for storing data in storage locations that can be accessed by address;


PRODUCTION SITE—a facility where one or more host computers run data processing applications that write data to a storage system and read data from the storage system;


REMOTE ACKNOWLEDGEMENTS—an acknowledgement from remote DPA to the local DPA that data arrived at the remote DPA (either to the appliance or the journal)


SPLITTER ACKNOWLEDGEMENT—an acknowledgement from a DPA to the protection agent (splitter) that data has been received at the DPA; this may be achieved by an SCSI status command.


SAN—a storage area network of nodes that send and receive an I/O and other requests, each node in the network being an initiator or a target, or both an initiator and a target;


SOURCE SIDE—a transmitter of data within a data replication workflow, during normal operation a production site is the source side; and during data recovery a backup site is the source side, sometimes called a primary side;


STORAGE SYSTEM—a SAN entity that provides multiple logical units for access by multiple SAN initiators


TARGET—a node in a SAN that replies to I/O requests;


TARGET SIDE—a receiver of data within a data replication workflow; during normal operation a back site is the target side, and during data recovery a production site is the target side, sometimes called a secondary side;


THIN PROVISIONING—thin provisioning involves the allocation of physical storage when it is needed rather than allocating the entire physical storage in the beginning. Thus, use of thin provisioning is known to improve storage utilization.


THIN LOGICAL UNIT—a thin logical unit is a logical unit that uses thin provisioning;


VIRTUAL LOGICAL UNIT—a virtual storage entity which is treated as a logical unit by virtual machines;


WAN—a wide area network that connects local networks and enables them to communicate with one another, such as the Internet.


A description of journaling and some techniques associated with journaling may be described in the patent titled “METHODS AND APPARATUS FOR OPTIMAL JOURNALING FOR CONTINUOUS DATA REPLICATION” and with U.S. Pat. No. 7,516,287, which is hereby incorporated by reference.


Referring to FIG. 1, a data protection system 100 includes two sites; Site I, which is a production site, and Site II, which is a backup site or replica site. Under normal operation the production site is the source side of system 100, and the backup site is the target side of the system. The backup site is responsible for replicating production site data. Additionally, the backup site enables roll back of Site I data to an earlier pointing time, which may be used in the event of data corruption of a disaster, or alternatively in order to view or to access data from an earlier point in time.



FIG. 1 is an overview of a system for data replication of either physical or virtual logical units. Thus, one of ordinary skill in the art would appreciate that in a virtual environment a hypervisor, in one example, would consume logical units and generate a distributed file system on them such as VMFS creates files in the file system and expose the files as logical units to the virtual machines (each VMDK is seen as a SCSI device by virtual hosts). In another example, the hypervisor consumes a network based file system and exposes files in the NFS as SCSI devices to virtual hosts.


During normal operations, the direction of replicate data flow goes from source side to target side. It is possible, however, for a user to reverse the direction of replicate data flow, in which case Site I starts to behave as a target backup site, and Site II starts to behave as a source production site. Such change of replication direction is referred to as a “failover”. A failover may be performed in the event of a disaster at the production site, or for other reasons. In some data architectures, Site I or Site II behaves as a production site for a portion of stored data, and behaves simultaneously as a backup site for another portion of stored data. In some data architectures, a portion of stored data is replicated to a backup site, and another portion is not.


The production site and the backup site may be remote from one another, or they may both be situated at a common site, local to one another. Local data protection has the advantage of minimizing data lag between target and source, and remote data protection has the advantage is being robust in the event that a disaster occurs at the source side.


The source and target sides communicate via a wide area network (WAN) 128, although other types of networks may be used.


Each side of system 100 includes three major components coupled via a storage area network (SAN); namely, (i) a storage system, (ii) a host computer, and (iii) a data protection appliance (DPA). Specifically with reference to FIG. 1, the source side SAN includes a source host computer 104, a source storage system 108, and a source DPA 112. Similarly, the target side SAN includes a target host computer 116, a target storage system 120, and a target DPA 124. As well, the protection agent (sometimes referred to as a splitter) may run on the host, or on the storage, or in the network or at a hypervisor level, and that DPAs are optional and DPA code may run on the storage array too, or the DPA 124 may run as a virtual machine.


Generally, a SAN includes one or more devices, referred to as “nodes”. A node in a SAN may be an “initiator” or a “target”, or both. An initiator node is a device that is able to initiate requests to one or more other devices; and a target node is a device that is able to reply to requests, such as SCSI commands, sent by an initiator node. A SAN may also include network switches, such as fiber channel switches. The communication links between each host computer and its corresponding storage system may be any appropriate medium suitable for data transfer, such as fiber communication channel links.


The host communicates with its corresponding storage system using small computer system interface (SCSI) commands.


System 100 includes source storage system 108 and target storage system 120. Each storage system includes physical storage units for storing data, such as disks or arrays of disks. Typically, storage systems 108 and 120 are target nodes. In order to enable initiators to send requests to storage system 108, storage system 108 exposes one or more logical units (LU) to which commands are issued. Thus, storage systems 108 and 120 are SAN entities that provide multiple logical units for access by multiple SAN initiators.


Logical units are a logical entity provided by a storage system, for accessing data stored in the storage system. The logical unit may be a physical logical unit or a virtual logical unit. A logical unit is identified by a unique logical unit number (LUN). Storage system 108 exposes a logical unit 136, designated as LU A, and storage system 120 exposes a logical unit 156, designated as LU B.


LU B is used for replicating LU A. As such, LU B is generated as a copy of LU A. In one embodiment, LU B is configured so that its size is identical to the size of LU A. Thus, for LU A, storage system 120 serves as a backup for source side storage system 108. Alternatively, as mentioned hereinabove, some logical units of storage system 120 may be used to back up logical units of storage system 108, and other logical units of storage system 120 may be used for other purposes. Moreover, there is symmetric replication whereby some logical units of storage system 108 are used for replicating logical units of storage system 120, and other logical units of storage system 120 are used for replicating other logical units of storage system 108.


System 100 includes a source side host computer 104 and a target side host computer 116. A host computer may be one computer, or a plurality of computers, or a network of distributed computers, each computer may include inter alia a conventional CPU, volatile and non-volatile memory, a data bus, an I/O interface, a display interface and a network interface. Generally a host computer runs at least one data processing application, such as a database application and an e-mail server.


Generally, an operating system of a host computer creates a host device for each logical unit exposed by a storage system in the host computer SAN. A host device is a logical entity in a host computer, through which a host computer may access a logical unit. Host device 104 identifies LU A and generates a corresponding host device 140, designated as Device A, through which it can access LU A. Similarly, host computer 116 identifies LU B and generates a corresponding device 160, designated as Device B.


In the course of continuous operation, host computer 104 is a SAN initiator that issues I/O requests (write/read operations) through host device 140 to LU A using, for example, SCSI commands. Such requests are generally transmitted to LU A with an address that includes a specific device identifier, an offset within the device, and a data size. Offsets are generally aligned to 512 byte blocks. The average size of a write operation issued by host computer 104 may be, for example, 10 kilobytes (KB); i.e., 20 blocks. For an I/O rate of 50 megabytes (MB) per second, this corresponds to approximately 5,000 write transactions per second.


System 100 includes two data protection appliances, a source side DPA 112 and a target side DPA 124. A DPA performs various data protection services, such as data replication of a storage system, and journaling of I/O requests issued by a host computer to source side storage system data. As explained in detail herein, when acting as a target side DPA, a DPA may also enable roll back of data to an earlier point in time, and processing of rolled back data at the target site. Each DPA 112 and 124 is a computer that includes inter alia one or more conventional CPUs and internal memory.


For additional safety precaution, each DPA is a cluster of such computers. Use of a cluster ensures that if a DPA computer is down, then the DPA functionality switches over to another computer. The DPA computers within a DPA cluster communicate with one another using at least one communication link suitable for data transfer via fiber channel or IP based protocols, or such other transfer protocol. One computer from the DPA cluster serves as the DPA leader. The DPA cluster leader coordinates between the computers in the cluster, and may also perform other tasks that require coordination between the computers, such as load balancing.


In the architecture illustrated in FIG. 1, DPA 112 and DPA 124 are standalone devices integrated within a SAN. Alternatively, each of DPA 112 and DPA 124 may be integrated into storage system 108 and storage system 120, respectively, or integrated into host computer 104 and host computer 116, respectively. Both DPAs communicate with their respective host computers through communication lines such as fiber channels using, for example, SCSI commands or any other protocol.


DPAs 112 and 124 are configured to act as initiators in the SAN; i.e., they can issue I/O requests using, for example, SCSI commands, to access logical units on their respective storage systems. DPA 112 and DPA 124 are also configured with the necessary functionality to act as targets; i.e., to reply to I/O requests, such as SCSI commands, issued by other initiators in the SAN, including inter alia their respective host computers 104 and 116. Being target nodes, DPA 112 and DPA 124 may dynamically expose or remove one or more logical units.


As described hereinabove, Site I and Site II may each behave simultaneously as a production site and a backup site for different logical units. As such, DPA 112 and DPA 124 may each behave as a source DPA for some logical units, and as a target DPA for other logical units, at the same time.


Host computer 104 and host computer 116 include protection agents 144 and 164, respectively. Protection agents 144 and 164 intercept SCSI commands issued by their respective host computers, via host devices to logical units that are accessible to the host computers. A data protection agent may act on an intercepted SCSI commands issued to a logical unit, in one of the following ways: send the SCSI commands to its intended logical unit; redirect the SCSI command to another logical unit; split the SCSI command by sending it first to the respective DPA; after the DPA returns an acknowledgement, send the SCSI command to its intended logical unit; fail a SCSI command by returning an error return code; and delay a SCSI command by not returning an acknowledgement to the respective host computer.


A protection agent may handle different SCSI commands, differently, according to the type of the command. For example, a SCSI command inquiring about the size of a certain logical unit may be sent directly to that logical unit, while a SCSI write command may be split and sent first to a DPA associated with the agent. A protection agent may also change its behavior for handling SCSI commands, for example as a result of an instruction received from the DPA.


Specifically, the behavior of a protection agent for a certain host device generally corresponds to the behavior of its associated DPA with respect to the logical unit of the host device. When a DPA behaves as a source site DPA for a certain logical unit, then during normal course of operation, the associated protection agent splits I/O requests issued by a host computer to the host device corresponding to that logical unit. Similarly, when a DPA behaves as a target device for a certain logical unit, then during normal course of operation, the associated protection agent fails I/O requests issued by host computer to the host device corresponding to that logical unit.


Communication between protection agents and their respective DPAs may use any protocol suitable for data transfer within a SAN, such as fiber channel, or SCSI over fiber channel. The communication may be direct, or via a logical unit exposed by the DPA. Protection agents communicate with their respective DPAs by sending SCSI commands over fiber channel.


Protection agents 144 and 164 are drivers located in their respective host computers 104 and 116. Alternatively, a protection agent may also be located in a fiber channel switch, or in any other device situated in a data path between a host computer and a storage system or on the storage system itself. In a virtualized environment, the protection agent may run at the hypervisor layer or in a virtual machine providing a virtualization layer.


What follows is a detailed description of system behavior under normal production mode, and under recovery mode.


In production mode DPA 112 acts as a source site DPA for LU A. Thus, protection agent 144 is configured to act as a source side protection agent; i.e., as a splitter for host device A. Specifically, protection agent 144 replicates SCSI I/O write requests. A replicated SCSI I/O write request is sent to DPA 112. After receiving an acknowledgement from DPA 124, protection agent 144 then sends the SCSI I/O write request to LU A. After receiving a second acknowledgement from storage system 108 host computer 104 acknowledges that an I/O command complete.


When DPA 112 receives a replicated SCSI write request from data protection agent 144, DPA 112 transmits certain I/O information characterizing the write request, packaged as a “write transaction”, over WAN 128 to DPA 124 on the target side, for journaling and for incorporation within target storage system 120.


DPA 112 may send its write transactions to DPA 124 using a variety of modes of transmission, including inter alia (i) a synchronous mode, (ii) an asynchronous mode, and (iii) a snapshot mode. In synchronous mode, DPA 112 sends each write transaction to DPA 124, receives back an acknowledgement from DPA 124, and in turns sends an acknowledgement back to protection agent 144. Protection agent 144 waits until receipt of such acknowledgement before sending the SCSI write request to LU A.


In asynchronous mode, DPA 112 sends an acknowledgement to protection agent 144 upon receipt of each I/O request, before receiving an acknowledgement back from DPA 124.


In snapshot mode, DPA 112 receives several I/O requests and combines them into an aggregate “snapshot” of all write activity performed in the multiple I/O requests, and sends the snapshot to DPA 124, for journaling and for incorporation in target storage system 120. In snapshot mode DPA 112 also sends an acknowledgement to protection agent 144 upon receipt of each I/O request, before receiving an acknowledgement back from DPA 124.


For the sake of clarity, the ensuing discussion assumes that information is transmitted at write-by-write granularity.


While in production mode, DPA 124 receives replicated data of LU A from DPA 112, and performs journaling and writing to storage system 120. When applying write operations to storage system 120, DPA 124 acts as an initiator, and sends SCSI commands to LU B.


During a recovery mode, DPA 124 undoes the write transactions in the journal, so as to restore storage system 120 to the state it was at, at an earlier time.


As described hereinabove, LU B is used as a backup of LU A. As such, during normal production mode, while data written to LU A by host computer 104 is replicated from LU A to LU B, host computer 116 should not be sending I/O requests to LU B. To prevent such I/O requests from being sent, protection agent 164 acts as a target site protection agent for host Device B and fails I/O requests sent from host computer 116 to LU B through host Device B.


Target storage system 120 exposes a logical unit 176, referred to as a “journal LU”, for maintaining a history of write transactions made to LU B, referred to as a “journal”. Alternatively, journal LU 176 may be striped over several logical units, or may reside within all of or a portion of another logical unit. DPA 124 includes a journal processor 180 for managing the journal.


Journal processor 180 functions generally to manage the journal entries of LU B. Specifically, journal processor 180 enters write transactions received by DPA 124 from DPA 112 into the journal, by writing them into the journal LU, reads the undo information for the transaction from LU B. updates the journal entries in the journal LU with undo information, applies the journal transactions to LU B, and removes already-applied transactions from the journal.


Referring to FIG. 2, which is an illustration of a write transaction 200 for a journal. The journal may be used to provide an adaptor for access to storage 120 at the state it was in at any specified point in time. Since the journal contains the “undo” information necessary to roll back storage system 120, data that was stored in specific memory locations at the specified point in time may be obtained by undoing write transactions that occurred subsequent to such point in time.


Write transaction 200 generally includes the following fields: one or more identifiers; a time stamp, which is the date & time at which the transaction was received by source side DPA 112; a write size, which is the size of the data block; a location in journal LU 176 where the data is entered; a location in LU B where the data is to be written; and the data itself.


Write transaction 200 is transmitted from source side DPA 112 to target side DPA 124. As shown in FIG. 2, DPA 124 records the write transaction 200 in the journal that includes four streams. A first stream, referred to as a DO stream, includes new data for writing in LU B. A second stream, referred to as an DO METADATA stream, includes metadata for the write transaction, such as an identifier, a date & time, a write size, a beginning address in LU B for writing the new data in, and a pointer to the offset in the DO stream where the corresponding data is located. Similarly, a third stream, referred to as an UNDO stream, includes old data that was overwritten in LU B; and a fourth stream, referred to as an UNDO METADATA, include an identifier, a date & time, a write size, a beginning address in LU B where data was to be overwritten, and a pointer to the offset in the UNDO stream where the corresponding old data is located.


In practice each of the four streams holds a plurality of write transaction data. As write transactions are received dynamically by target DPA 124, they are recorded at the end of the DO stream and the end of the DO METADATA stream, prior to committing the transaction. During transaction application, when the various write transactions are applied to LU B, prior to writing the new DO data into addresses within the storage system, the older data currently located in such addresses is recorded into the UNDO stream. In some examples, the metadata stream (e.g., UNDO METADATA stream or the DO METADATA stream) and the data stream (e.g., UNDO stream or DO stream) may be kept in a single stream each (i.e., one UNDO data and UNDO METADATA stream and one DO data and DO METADATA stream) by interleaving the metadata into the data stream.


Referring to FIG. 3, a data protection system 100′ includes a host 104′, a storage array 108′, a DPA 112′, which includes a delta marker 202, the WAN 128, the DPA 124′ and the storage array 120′ with a journal 176′. The data replication 100′ is similar to the data protection system 100 except the splitter 144′ is located at the storage array 108′ and the splitter 144′ includes an I/O metadata backlog 204. In one example, the backlog 204 is a hash table when the hashing is from volume ID to the volume metadata, i.e., the metadata of the I/Os which have not been written to the delta marker 202. In the event the DPA 112′, crashes not all of the I/O metadata will be lost. Rather, the DPA 112′ will be able to obtain the I/O metadata from the splitter 144′. The splitter 144′ sends the I/Os to the DPA 112′ which stores in the delta marker 202 asynchronously.


Referring to FIG. 4, in one example, the I/O metadata backlog 204 saves I/O metadata by volume. For example, if the storage array 108′ had four volumes (not shown) the I/O metadata would be organized by volumes 220a-220d, respectively. One example of a volume is a volume 220a. The volume 220a includes an active data structure (DS) 222a, a passive data structure 222b, a unique volume ID 226 and a session ID 228. The session ID is determined each time after the splitter 1444′ and/or the DPA 112′ crashes. The unique volume ID 226 enables finding the volume in the backlog 204. For example, the unique volume ID 226 enables finding the I/O metadata for a volume by searching a hash table of the backlog 204. In one example, the active data structure (DS) 222a and the passive data structure 222b are each buffers.


The active DS 222a includes a unique data structure ID (UDSID) 232a, an I/O counter 234a, an acknowledgment (Ack) counter 236a and a no acknowledgement (Nack) counter 238a and the passive DS 222b includes a UDSID 232b, an I/O counter 234b, an acknowledgment (Ack) counter 236b and a no acknowledgement (Nack) counter 238b.


The I/O counters 234a, 234b each counts how many I/Os have been added to its respective data structure.


The ack counters 236a, 236b each counts how many I/Os where acknowledgement is received from all intended recipients. For example, an ack counter is incremented by one if the I/O is written to the storage array 108′ and is received by the DPA 112


The nack counters 238a, 238b each counts how many I/Os where no acknowledgement is received from at least one source. For example, an nack counter is incremented by one if an acknowledgement failure is received from either the storage array 108′ or the DPA 112′.


The I/O metadata 240a, 240b each saves the metadata for the I/O received. For example, the metadata may include an offset (address), I/O data size and so forth. In other examples, the I/O metadata is dynamic. For if there are very few I/Os then the granularity of the I/O metadata saved is very fine (i.e., there is more metadata per I/O that is saved) than when there are many I/Os when the granularity is courser (i.e., there is less metadata per I/O that is saved).


Referring to FIG. 5, process 500 is an example of a process to handle new/Os using an I/O metadata backlog. Process 500 receives an I/O at the splitter (502), increments the I/O counter in the active data structure (504) and stores the I/O metadata in the active data structure (506). For example, the host 102′ sends an I/O to the splitter 144′, and the splitter 144′ stores the I/O in active data structure 222a of the backlog 204 before the I/O is written to the storage array 108′. In one particular example, the I/O metadata is saved in I/O metadata 240a and the I/O counter 234a is incremented by one.


Referring to FIG. 6, process 600 is an example of a process to record success or failure of I/Os. Process 600 receives acknowledgements from the storage array (602) that I/O have been written to the storage array (602). For example, the splitter 144′ receives an acknowledgment that an I/O is written to the storage array 108′.


Process 600 receives acknowledgements from the DPA (602) that an I/O arrived at the DPA (602). For example, the splitter 144′ receives an acknowledgment from the DPA 112′ that an I/O arrived.


Process 600 adjusts the ack Counter and the nack counter based on the acknowledgements received in processing blocks 602 and 604 (606). For example, an ack counter 236b is incremented by one if the I/O is written to the storage array 108′ and is received by the DPA 112′. In another example, an nack counter 238b is incremented by one if an acknowledgment failure is received from either the storage array 108′ or the DPA 112′.


Referring to FIG. 7, process 700 is an example of a process to handle the y/O metadata backlog with successful I/Os. Process 700 determines if the I/O counter equals the ack counter in the passive data structure (702). If the passive data structure 222b has the ack counter 236b equal to the I/O counter 234b, process 700 waits for an acknowledgement that the data in the passive data structure was flushed from the delta marker 202 by the DPA (704) and erases the passive data structure 222b after the delta marker was flushed. In one example, the DPA 112′ erases data from the delta marker 202 if the DPA 112′ receives acknowledgement that the I/O data is safely written to the replica site journal (e.g., journal 176′) and that the passive DS 222b is deleted’.


The active data structure becomes the new passive data structure (712) and a new active data structure is generated (714).


Referring to FIG. 8, process 800 is an example of a process to handle the I/O metadata backlog with unsuccessful I/Os. Process 800 determines if the nack counter in the passive data structure is greater than ‘0’ and if the nack counter is greater than ‘0’ stops replication 804. For example, the nack counter 238b is equal to ‘7’.


Process 800 waits for the nack counter plus the ack counter to equal the I/O counter (806). For example, the nack counter 238b equals ‘7’, the ack counter 236b equals ‘23’ and the I/O counter 234b equals ‘30’.


Process 800 reads the passive data structure (810), and adds to the delta marker (814). For example, the I/O metadata 240b is sent by the splitter 144′ to the delta marker 202.


Process 800 adds nack counter to ack counter (818) and resets nack counter to “0” (822). For example, the nack counter 238b, which equals ‘7’ is added to the ack counter 236b, which equals ‘23’ to equal ‘30’ and the nack counter 238b is reset to ‘0’.


Process 800 restarts replication (826).


Referring to FIG. 9, in one example, a computer 900 includes a processor 902, a volatile memory 904, a non-volatile memory 906 (e.g., hard disk) and the user interface (UI) 908 (e.g., a graphical user interface, a mouse, a keyboard, a display, touch screen and so forth). The non-volatile memory 906 stores computer instructions 912, an operating system 916 and data 918. In one example, the computer instructions 912 are executed by the processor 902 out of volatile memory 904 to perform all or part of the processes described herein (e.g., processes 500, 600, 700 and 800).


The processes described herein (e.g., processes 500, 600, 700 and 800) are not limited to use with the hardware and software of FIG. 9; they may find applicability in any computing or processing environment and with any type of machine or set of machines that is capable of running a computer program. The processes described herein may be implemented in hardware, software, or a combination of the two. The processes described herein may be implemented in computer programs executed on programmable computers/machines that each includes a processor, a non-transitory machine-readable medium or other article of manufacture that is readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and one or more output devices. Program code may be applied to data entered using an input device to perform any of the processes described herein and to generate output information.


The system may be implemented, at least in part, via a computer program product, (e.g., in a non-transitory machine-readable storage medium such as, for example, a non-transitory computer-readable medium), for execution by, or to control the operation of, data processing apparatus (e.g., a programmable processor, a computer, or multiple computers). Each such program may be implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs may be implemented in assembly or machine language. The language may be a compiled or an interpreted language and it may be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program may be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network. A computer program may be stored on a non-transitory machine-readable medium that is readable by a general or special purpose programmable computer for configuring and operating the computer when the non-transitory machine-readable medium is read by the computer to perform the processes described herein. For example, the processes described herein may also be implemented as a non-transitory machine-readable storage medium, configured with a computer program, where upon execution, instructions in the computer program cause the computer to operate in accordance with the processes. A non-transitory machine-readable medium may include but is not limited to a hard drive, compact disc, flash memory, non-volatile memory, volatile memory, magnetic diskette and so forth but does not include a transitory signal per se.


The processes described herein are not limited to the specific examples described. For example, the processes 500, 600, 700 and 800 are not limited to the specific processing order of FIGS. 5 to 8, respectively. Rather, any of the processing blocks of FIGS. 5 to 8 may be re-ordered, combined or removed, performed in parallel or in serial, as necessary, to achieve the results set forth above.


The processing blocks (for example, in the processes 500, 600, 700 and 800) associated with implementing the system may be performed by one or more programmable processors executing one or more computer programs to perform the functions of the system. All or part of the system may be implemented as, special purpose logic circuitry (e.g., an FPGA (field-programmable gate array) and/or an ASIC (application-specific integrated circuit)). All or part of the system may be implemented using electronic hardware circuitry that include electronic devices such as, for example, at least one of a processor, a memory, a programmable logic device or a logic gate.


Elements of different embodiments described herein may be combined to form other embodiments not specifically set forth above. Various elements, which are described in the context of a single embodiment, may also be provided separately or in any suitable subcombination. Other embodiments not specifically described herein are also within the scope of the following claims.

Claims
  • 1. A method comprising; receiving an input/output (I/O) request, wherein the I/O request is used in data replication;incrementing an I/O counter in an active data structure in a backlog at a splitter after receiving the I/O request;storing I/O metadata of the I/O request in the active data structure;incrementing an active acknowledgement counter located in the active data structure in the backlog or incrementing a passive acknowledgement counter located in a passive data structure in the backlog, in response to the I/O request being written to a storage array and being received by a data protection appliance (DPA); andincrementing an active no acknowledgement counter located in the active data structure or incrementing a passive no acknowledgement counter located in the passive data structure, in response to either the I/O request not being written to a storage array or not being received by the data protection appliance;in response to the passive no acknowledgement counter being greater than an initial value: stopping the data replication;reading I/O metadata from the passive data structure after a passive I/O counter in the passive data structure equals a sum of the passive acknowledgement counter and the passive no acknowledgement counter;adding the I/O metadata read to a delta marker;adding a value of the passive no acknowledgement counter to a value of the passive acknowledgement counter;resetting the passive no acknowledgement counter to the initial value;and restarting the data replication.
  • 2. The method of claim 1, further comprising, in response to the passive I/O counter equaling the passive acknowledgment counter: erasing the passive data structure after receiving acknowledgment that data in the passive data structure was flushed from a delta marker,making the active data structure a passive data structure; andgenerating a new active data structure.
  • 3. The method of claim 1, further comprising deleting the I/O metadata from a delta marker at the DPA after receiving notification from a replication site that I/O data was safely written to a replication storage and receiving notification that I/O data from the passive data structure was erased.
  • 4. The method of claim 1 wherein storing I/O metadata for an I/O request in a backlog comprises determining a size of the I/O metadata stored depending on a total number of I/O requests.
  • 5. An apparatus, comprising electronic hardware circuitry configured to: receive an input/output (I/O) request, wherein the I/O request is used in data replication;increment an I/O counter in an active data structure in a backlog at a splitter after receiving the I/O request;store I/O metadata of the I/O request in the active data structure;increment an active acknowledgement counter located in the active data structure in the backlog or incrementing a passive acknowledgement counter located in a passive data structure in the backlog, in response to the I/O request being written to a storage array and being received by a data protection appliance (DPA); andincrement an active no acknowledgement counter located in the active data structure or incrementing a passive no acknowledgement counter located in the passive data structure, in response to either the I/O request not being written to a storage array or not being received by the data protection appliance;in response to the passive no acknowledgement counter being greater than an initial value: stopping the data replication;reading I/O metadata from the passive data structure after a passive I/O counter in the passive data structure equals a sum of the passive acknowledgement counter and the passive no acknowledgement counter;adding the I/O metadata read to a delta marker;adding a value of the passive no acknowledgement counter to a value of the passive acknowledgement counter;resetting the passive no acknowledgement counter to the initial value;and restarting the data replication.
  • 6. The apparatus of claim 5, wherein the circuitry comprises at least one of a processor, a memory, a programmable logic device or a logic gate.
  • 7. The apparatus of claim 5, further comprising circuitry configured to, in response to the passive I/O counter equaling the passive acknowledgment counter: erase the passive data structure after receiving acknowledgment that data in the passive data structure was flushed from a delta marker;make the active data structure a passive data structure; andgenerate a new active data structure.
  • 8. The apparatus of claim 5, further comprising circuitry configured to delete the I/O metadata from a delta marker at the DPA after receiving notification from a replication site that I/O data was safely written to a replication storage and receiving notification that I/O data from the passive data structure was erased.
  • 9. The apparatus of claim 5, wherein the circuitry configured to store I/O metadata for an I/O request comprises circuitry configured to determine a size of the I/O metadata stored depending on a total number of I/O requests.
  • 10. An article comprising: a non-transitory computer-readable medium that stores computer-executable instructions, the instructions causing a machine to: receive an input/output (I/O) request, wherein the I/O request is used in data replication;increment an I/O counter in an active data structure in a backlog at a splitter after receiving the I/O request;store I/O metadata of the I/O request in the active data structure;increment an active acknowledgement counter located in the active data structure in the backlog or incrementing a passive acknowledgement counter located in a passive data structure in the backlog, in response to the I/O request being written to a storage array and being received by a data protection appliance (DPA); andincrement an active no acknowledgement counter located in the active data structure or incrementing a passive no acknowledgement counter located in the passive data structure, in response to either the I/O request not being written to a storage array or not being received by the data protection appliance;in response to the passive no acknowledgement counter being greater than an initial value: stopping the data replication;reading I/O metadata from the passive data structure after a passive I/O counter in the passive data structure equals a sum of the passive acknowledgement counter and the passive no acknowledgement counter;adding the I/O metadata read to a delta marker;adding a value of the passive no acknowledgement counter to a value of the passive acknowledgement counter;resetting the passive no acknowledgement counter to the initial value;and restarting the data replication.
  • 11. The article of claim 10, further comprising instructions causing the machine to, in response to the passive I/O counter equaling the passive acknowledgment counter: erase the passive data structure after receiving acknowledgment that data in the passive data structure was flushed from a delta marker;make the active data structure a passive data structure; andgenerate a new active data structure.
  • 12. The article of claim 10, further comprising instructions causing the machine to delete the I/O metadata from a delta marker at the DPA after receiving notification from a replication site that I/O data was safely written to a replication storage and receiving notification that I/O data from the passive data structure was erased.
  • 13. The article of claim 10, wherein the instructions causing the machine to store I/O metadata for an I/O request in a backlog comprises instructions causing the machine to determine a size of the I/O metadata stored depending on a total number of I/O requests.
US Referenced Citations (255)
Number Name Date Kind
5170480 Mohan et al. Dec 1992 A
5249053 Jain Sep 1993 A
5388254 Betz et al. Feb 1995 A
5499367 Bamford et al. Mar 1996 A
5526397 Lohman Jun 1996 A
5546347 Ko Aug 1996 A
5864837 Maimone Jan 1999 A
5990899 Whitten Jan 1999 A
5879459 Gadgil et al. Mar 1999 A
5982772 Oskouy Nov 1999 A
6042652 Hyun et al. Mar 2000 A
6065018 Beier et al. May 2000 A
6143659 Leem Nov 2000 A
6148340 Bittinger et al. Nov 2000 A
6151658 Magro Nov 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6203613 Gates et al. Mar 2001 B1
6260125 McDowell Jul 2001 B1
6270572 Kim et al. Aug 2001 B1
6272534 Guha Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6467023 DeKoning et al. Oct 2002 B1
6574657 Dickinson Jun 2003 B1
6621493 Whitten Sep 2003 B1
6804676 Bains, II Oct 2004 B1
6947981 Lubbers et al. Sep 2005 B2
7051126 Franklin Mar 2006 B1
7043610 Horn et al. May 2006 B2
7076620 Takeda et al. Jul 2006 B2
7111197 Kingsbury et al. Sep 2006 B2
7117327 Hirakawa et al. Oct 2006 B2
7120737 Thelin Oct 2006 B1
7120768 Mizuno et al. Oct 2006 B2
7130975 Suishu et al. Oct 2006 B2
7139927 Park et al. Nov 2006 B2
7159088 Hirakawa et al. Jan 2007 B2
7167963 Hirakawa et al. Jan 2007 B2
7203741 Marco et al. Apr 2007 B2
7222136 Brown et al. May 2007 B1
7296008 Passerini et al. Nov 2007 B2
7328373 Kawamura et al. Feb 2008 B2
7353335 Kawamura Apr 2008 B2
7360113 Anderson et al. Apr 2008 B2
7426618 Vu et al. Sep 2008 B2
7516287 Ahal et al. Apr 2009 B2
7519625 Honami et al. Apr 2009 B2
7519628 Leverett Apr 2009 B1
7546485 Cochran et al. Jun 2009 B2
7577867 Lewin et al. Aug 2009 B2
7590887 Kano Sep 2009 B2
7606940 Yamagami Oct 2009 B2
7627612 Ahal et al. Dec 2009 B2
7627687 Ahal et al. Dec 2009 B2
7719443 Natanzon May 2010 B1
7757057 Sangapu et al. Jul 2010 B2
7774565 Lewin et al. Aug 2010 B2
7797358 Ahal et al. Sep 2010 B1
7840536 Ahal et al. Nov 2010 B1
7840662 Natanzon Nov 2010 B1
7844856 Ahal et al. Nov 2010 B1
7849361 Ahal et al. Dec 2010 B2
7860836 Natanzon et al. Dec 2010 B1
7882286 Natanzon et al. Feb 2011 B1
7934262 Natanzon et al. Apr 2011 B1
7958372 Natanzon Jun 2011 B1
8037162 Marco et al. Oct 2011 B2
8041940 Natanzon et al. Oct 2011 B1
8060713 Natanzon Nov 2011 B1
8060714 Natanzon Nov 2011 B1
8103937 Natanzon Jan 2012 B1
8108634 Natanzon et al. Jan 2012 B1
8205009 Heller et al. Jun 2012 B2
8214612 Natanzon Jul 2012 B1
8250149 Marco et al. Aug 2012 B2
8271441 Natanzon et al. Sep 2012 B1
8271447 Natanzon et al. Sep 2012 B1
8332687 Natanzon et al. Dec 2012 B1
8335761 Natanzon Dec 2012 B1
8335771 Natanzon et al. Dec 2012 B1
8341115 Natanzon et al. Dec 2012 B1
8370648 Natanzon Feb 2013 B1
8380885 Natanzon Feb 2013 B1
8392680 Natanzon et al. Mar 2013 B1
8429362 Natanzon et al. Apr 2013 B1
8433869 Natanzon et al. Apr 2013 B1
8438135 Natanzon et al. May 2013 B1
8464101 Natanzon et al. Jun 2013 B1
8478955 Natanzon et al. Jul 2013 B1
8495304 Natanzon et al. Jul 2013 B1
8510279 Natanzon et al. Aug 2013 B1
8521691 Natanzon Aug 2013 B1
8521694 Natanzon Aug 2013 B1
8543609 Natanzon Sep 2013 B1
8583838 Marshak et al. Nov 2013 B1
8583885 Natanzon Nov 2013 B1
8600945 Natanzon et al. Dec 2013 B1
8601085 Ives et al. Dec 2013 B1
8627012 Derbeko et al. Jan 2014 B1
8683592 Dotan et al. Mar 2014 B1
8694700 Natanzon et al. Apr 2014 B1
8706700 Natanzon et al. Apr 2014 B1
8712962 Natanzon et al. Apr 2014 B1
8719497 Don et al. May 2014 B1
8725691 Natanzon May 2014 B1
8725692 Natanzon et al. May 2014 B1
8726066 Natanzon et al. May 2014 B1
8738813 Natanzon et al. May 2014 B1
8745004 Natanzon et al. Jun 2014 B1
8751828 Raizen et al. Jun 2014 B1
8769336 Natanzon et al. Jul 2014 B1
8805786 Natanzon Aug 2014 B1
8806161 Natanzon Aug 2014 B1
8825848 Dotan et al. Sep 2014 B1
8832399 Natanzon et al. Sep 2014 B1
8850143 Natanzon Sep 2014 B1
8850144 Natanzon et al. Sep 2014 B1
8862546 Natanzon et al. Oct 2014 B1
8892835 Natanzon et al. Nov 2014 B1
8898112 Natanzon et al. Nov 2014 B1
8898409 Natanzon et al. Nov 2014 B1
8898515 Natanzon Nov 2014 B1
8898519 Natanzon et al. Nov 2014 B1
8914595 Natanzon Dec 2014 B1
8924668 Natanzon Dec 2014 B1
8930500 Marco et al. Jan 2015 B2
8930947 Derbeko et al. Jan 2015 B1
8977593 Natanzon et al. Mar 2015 B1
8977826 Meiri et al. Mar 2015 B1
8996460 Frank et al. Mar 2015 B1
8996461 Natanzon et al. Mar 2015 B1
8996827 Natanzon Mar 2015 B1
9003138 Natanzon et al. Apr 2015 B1
9026696 Natanzon et al. May 2015 B1
9031913 Natanzon May 2015 B1
9032160 Natanzon et al. May 2015 B1
9037818 Natanzon et al. May 2015 B1
9063994 Natanzon et al. Jun 2015 B1
9069479 Natanzon Jun 2015 B1
9069709 Natanzon et al. Jun 2015 B1
9081754 Natanzon et al. Jul 2015 B1
9081842 Natanzon et al. Jul 2015 B1
9087008 Natanzon Jul 2015 B1
9087112 Natanzon et al. Jul 2015 B1
9104529 Derbeko et al. Aug 2015 B1
9110914 Frank et al. Aug 2015 B1
9116811 Derbeko et al. Aug 2015 B1
9128628 Natanzon et al. Sep 2015 B1
9128855 Natanzon et al. Sep 2015 B1
9134914 Derbeko et al. Sep 2015 B1
9135119 Natanzon et al. Sep 2015 B1
9135120 Natanzon Sep 2015 B1
9146878 Cohen et al. Sep 2015 B1
9152339 Cohen et al. Oct 2015 B1
9152578 Saad et al. Oct 2015 B1
9152814 Natanzon Oct 2015 B1
9158578 Derbeko et al. Oct 2015 B1
9158630 Natanzon Oct 2015 B1
9160526 Raizen et al. Oct 2015 B1
9177670 Derbeko et al. Nov 2015 B1
9189339 Cohen et al. Nov 2015 B1
9189341 Natanzon et al. Nov 2015 B1
9201736 Moore et al. Dec 2015 B1
9223659 Natanzon et al. Dec 2015 B1
9225529 Natanzon et al. Dec 2015 B1
9235481 Natanzon et al. Jan 2016 B1
9235524 Derbeko et al. Jan 2016 B1
9235632 Natanzon Jan 2016 B1
9244997 Natanzon et al. Jan 2016 B1
9256605 Natanzon Feb 2016 B1
9274718 Natanzon et al. Mar 2016 B1
9275063 Natanzon Mar 2016 B1
9286052 Solan et al. Mar 2016 B1
9305009 Bono et al. Apr 2016 B1
9323750 Natanzon et al. Apr 2016 B2
9330155 Bono et al. May 2016 B1
9336094 Wolfson et al. May 2016 B1
9336230 Natanzon May 2016 B1
9367260 Natanzon Jun 2016 B1
9378096 Erel et al. Jun 2016 B1
9378219 Bono et al. Jun 2016 B1
9378261 Bono et al. Jun 2016 B1
9383937 Frank et al. Jul 2016 B1
9389800 Natanzon et al. Jul 2016 B1
9405481 Cohen et al. Aug 2016 B1
9405684 Derbeko et al. Aug 2016 B1
9405765 Natanzon Aug 2016 B1
9411535 Shemer et al. Aug 2016 B1
9459804 Natanzon et al. Oct 2016 B1
9460028 Raizen et al. Oct 2016 B1
9471579 Natanzon Oct 2016 B1
9477407 Marshak et al. Oct 2016 B1
9501542 Natanzon Nov 2016 B1
9507732 Natanzon et al. Nov 2016 B1
9507845 Natanzon et al. Nov 2016 B1
9514138 Natanzon et al. Dec 2016 B1
9524218 Veprinsky et al. Dec 2016 B1
9529885 Natanzon et al. Dec 2016 B1
9535800 Natanzon et al. Jan 2017 B1
9535801 Natanzon et al. Jan 2017 B1
9547459 BenHanokh et al. Jan 2017 B1
9547591 Natanzon et al. Jan 2017 B1
9552405 Moore et al. Jan 2017 B1
9557921 Cohen et al. Jan 2017 B1
9557925 Natanzon Jan 2017 B1
9563517 Natanzon et al. Feb 2017 B1
9563684 Natanzon et al. Feb 2017 B1
9575851 Natanzon et al. Feb 2017 B1
9575857 Natanzon Feb 2017 B1
9575894 Natanzon et al. Feb 2017 B1
9582382 Natanzon et al. Feb 2017 B1
9588703 Natanzon et al. Mar 2017 B1
9588847 Natanzon et al. Mar 2017 B1
20020129168 Kanai et al. Sep 2002 A1
20030048842 Fourquin et al. Mar 2003 A1
20030061537 Cha et al. Mar 2003 A1
20030110278 Anderson Jun 2003 A1
20030145317 Chamberlain Jul 2003 A1
20030196147 Hirata et al. Oct 2003 A1
20040205092 Longo et al. Oct 2004 A1
20040250032 Ji et al. Dec 2004 A1
20040254964 Kodama et al. Dec 2004 A1
20050015663 Armangau et al. Jan 2005 A1
20050028022 Amano Feb 2005 A1
20050049924 DeBettencourt et al. Mar 2005 A1
20050172092 Lam et al. Aug 2005 A1
20050273655 Chow et al. Dec 2005 A1
20060031647 Hirakawa et al. Feb 2006 A1
20060047996 Anderson et al. Mar 2006 A1
20060064416 Sim-Tang Mar 2006 A1
20060107007 Hirakawa et al. May 2006 A1
20060117211 Matsunami et al. Jun 2006 A1
20060161810 Bao Jul 2006 A1
20060179343 Kitamura Aug 2006 A1
20060195670 Iwamura et al. Aug 2006 A1
20060212462 Hellen et al. Sep 2006 A1
20070055833 Vu et al. Mar 2007 A1
20070162513 Lewin et al. Jul 2007 A1
20070180304 Kano Aug 2007 A1
20070198602 Ngo et al. Aug 2007 A1
20070198791 Iwamura et al. Aug 2007 A1
20070220311 Lewin et al. Sep 2007 A1
20070266053 Ahal et al. Nov 2007 A1
20080082591 Ahal et al. Apr 2008 A1
20080082592 Ahal et al. Apr 2008 A1
20080082770 Ahal Apr 2008 A1
20090198893 Sorgard Aug 2009 A1
20110231596 Goss Sep 2011 A1
20120173773 Povaliaev Jul 2012 A1
20120317353 Webman et al. Dec 2012 A1
20120324180 Asnaashari et al. Dec 2012 A1
20140173186 Randall et al. Jun 2014 A1
20150121021 Nakamura et al. Apr 2015 A1
20160011996 Asaad et al. Jan 2016 A1
20160054942 Yu et al. Feb 2016 A1
Foreign Referenced Citations (2)
Number Date Country
1154356 Nov 2001 EP
WO 00 45581 Aug 2000 WO
Non-Patent Literature Citations (33)
Entry
Gibson, “Five Point Plan Lies at the Heart of Compression Technology;” Apr. 29, 1991; p. 1.
Soules, “Metadata Efficiency in Versioning File Systems;” 2003; pp. 1-16.
AIX System Management Concepts: Operating Systems and Devices; May 2000; pp. 1-280.
Soules et al.; “Metadata Efficiency in a Comprehensive Versioning File System;” May 2002; CMU-CS-02-145; School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213; 33 pages.
Linux Filesystems; Sams Publishing; 2002; pp. 17-22 and 67-71.
Bunyan, “Multiplexing in a BrightStor® ARCserve® Backup Release 11;” Mar. 2004; pp. 1-4.
Marks, “Network Computing;” Feb. 2, 2006; pp. 1-8.
Hill, “Network Computing;” Jun. 8, 2006; pp. 1-9.
Microsoft Computer Dictionary; 2002; Press Fifth Edition; 2 pages.
Retrieved from http://en.wikipedia.org/wiki/DEFLATE, Deflate; Jun. 19, 2008; pp. 1-6.
Retrieved from http://en.wikipedia.org/wiki/Huffman_coding; Huffman Coding; Jun. 8, 2008; pp. 1-11.
Retrieved from http:///en.wikipedia.org/wiki/LZ77; LZ77 and LZ78; Jun. 17, 2008; pp. 1-2.
Lev Ayzenberg, et al.; “Realigning Data in Replication System,” U.S. Appl. No. 14/496,795, filed Sep. 25, 2014 39 pages.
U.S. Appl. No. 11/609,560.
U.S. Appl. No. 12/057,652.
U.S. Appl. No. 11/609,561.
U.S. Appl. No. 11/356,920.
U.S. Appl. No. 10/512,687.
U.S. Appl. No. 11/536,233.
U.S. Appl. No. 11/536,215.
U.S. Appl. No. 11/536,150.
U.S. Appl. No. 11/964,168.
U.S. Appl. No. 14/496,795.
Request for Continued Examination (RCE) and Response to U.S. Final Office Action dated Nov. 30, 2016 corresponding to U.S. Appl. No. 14/496,795; RCE and Response dated Jan. 11, 2017; 13 Pages.
U.S. Non-Final Office Action dated Feb. 10, 2017 for U.S. Appl. No. 14/496,795; 16 Pages.
U.S. Final Office Action dated Nov. 30, 2016 corresponding to U.S. Appl. No. 14/496,795; 14 Pages.
U.S. Office Action dated Jun. 16, 2016 corresponding to U.S. Appl. No. 14/496,795; 23 Pages.
Response to U.S. Office Action dated Jun. 16, 2016 corresponding to U.S. Appl. No. 14/496,795; Response dated Sep. 16, 2016; 12 Pages.
Response to U.S. Non-Final Office Action dated Feb. 10, 2017 for U.S. Appl. No. 14/496,795; Response dated May 12, 2017; 14 Pages.
U.S. Final Office Action dated Jun. 23, 2017 for U.S. Appl. No. 14/496,795; 16 Pages.
Request for Continued Examination dated Sep. 20, 2017 for U.S. Appl. No. 14/496,795; 2 pages.
Amendment in reply to Action dated Jun. 23, 2017 dated Sep. 20, 2017 for U.S. Appl. No. 14/496,795; 9 pages.
U.S. Non-Final Office Action dated Jan. 2, 2018 for U.S. Appl. No. 14/496,795; 12 Pages.