The present invention generally relates to sprayers, and more particularly to a backpack style sprayer, and still more particularly to a manually actuated backpack style sprayer having an internal pump.
Sprayers, such as backpack sprayers are used across an array of applications, including farms, golf courses and residential properties, to apply water or other liquids, such as fertilizers or pesticides including herbicides, insecticides and the like. As the name implies, backpack sprayers are designed to be worn by the user, such as through securing a tank of the sprayer against the user's back via one or more shoulder straps. A handheld spray wand is fluidly coupled to the tank and is manually actuated, such as through a trigger, to dispense fluid from the tank through the spray wand. To pressurize the fluid for delivery to the wand, backpack sprayers include a pump and may be configured as battery powered pump sprayers or manually actuated pump sprayers.
Typically, manually actuated pump sprayers include pump units suspended beneath the spray tank. A support stand may be included with the backpack to prevent resting of the pump unit on the ground when the sprayer is not being worn. Nevertheless, because the pump unit is located externally of the spray tank, the various moving components of the pump unit are susceptible to impact damage and contamination due to dust and dirt. While backpack sprayers have been engineered to incorporate the pump unit with the body of the tank housing, such sprayers require complex plumbing, are susceptible to seal failures and are difficult to clean and maintain.
A further drawback of manually actuated internal pump sprayers is inefficiency of the pumping mechanism. That is, internal pump sprayers use a single action piston pump to pressurize fluid from the spray tank into the pump's pressure vessel. As a result, actuation of the pump handle pressurizes fluid only on either the up-stroke or down-stroke of the piston. A further consequence is the need for a relatively large-sized piston and cylinder to move a useful amount of liquid per stroke cycle. However, handle force to actuate the pump increases as a result of cylinder diameter. Thus, a large piston and cylinder requires a higher pumping force applied to the handle. The need to provide such a pumping force may lead to user fatigue. Also, the maximum pressure a fluid within the pressure vessel can reach is limited by the amount of handle force required. As a result, large piston and cylinder pumps have decreased operating fluid pressures.
Thus, there remains a need for a backpack sprayer with in an internal pump that is more easily plumbed, operated and cleaned, as well as being more efficient while requiring less handle force. The present invention satisfies this as well as other needs.
In view of the above and in accordance with an aspect of the present invention, the present invention is generally directed to an internal pump backpack sprayer system comprising first and second tanks and a double action pump unit. The first tank includes a tank housing defining an open internal volume configured to hold a fluid therein. The second tank is dimensioned to be received within the internal volume of the first tank and is configured to receive a pressurized fluid therein. The double action pump unit is received within the internal volume of the first tank and is fluidly coupled to the first tank and the second tank. The pump unit is configured to receive the fluid from the first tank and deliver the pressurized fluid to the second tank.
The pump unit comprises a cylinder and piston assembly and a piston rod. The cylinder and piston assembly comprises a cylinder housing, a piston, a cylinder head, a pump manifold, an inlet check valve assembly and an outlet check valve assembly. The piston rod is coupled to the piston at a first end of the piston rod.
The cylinder housing has an inlet tube wall defining an inlet tube, an outlet tube wall defining an outlet tube, an inner cylinder wall defining a cylinder, and a bottom wall including an inlet tube orifice coinciding with the inlet tube, an outlet tube orifice coinciding with the outlet tube and a cylinder inlet orifice and cylinder outlet orifice coinciding with the cylinder. The cylinder housing has a top end located opposite the bottom wall. The piston is located and moveable within the cylinder.
A first pressure chamber is defined within the inner cylinder wall between the bottom wall of the cylinder housing and the piston. The cylinder head is located at the top end of the cylinder housing. A second pressure chamber is defined with the inlet tube, the outlet tube and the inner cylinder wall between the piston and the cylinder head. The pump manifold is secured to the bottom wall of the cylinder housing and includes an inlet well fluidly separated from an outlet well. The inlet well includes an inlet orifice in fluid communication with the first tank and the outlet well includes an outlet orifice in fluid communication with the second tank. The inlet check valve assembly is located in the inlet well and includes an inlet check valve housing, an inlet tube check valve and a cylinder inlet check valve. The outlet check valve assembly is located in the outlet well and includes an outlet check valve housing, an outlet tube check valve and a cylinder outlet check valve.
During an up-stroke of the piston within the cylinder, the inlet tube check valve and the cylinder outlet check valve are closed and the cylinder inlet check valve and the outlet tube check valve are open. A vacuum is formed in the first pressure chamber to draw fluid from the first tank into the first pressure chamber through the inlet orifice in the pump manifold and the cylinder inlet orifice. Pressurized fluid within the second pressure chamber is discharged from the outlet tube to the second tank through the outlet tube orifice and the outlet orifice in the pump manifold.
During a down-stroke of the piston within the cylinder, the inlet tube check valve and the cylinder outlet check valve are open and the cylinder inlet check valve and the outlet tube check valve are closed. Pressurized fluid within the first pressure chamber is discharged from the cylinder to the second tank through the cylinder outlet orifice and the outlet orifice in the pump manifold and a vacuum is formed in the second pressure chamber to draw fluid from the first tank into the second pressure chamber through the inlet orifice in the pump manifold and the inlet tube orifice.
Additional objects, advantages and novel aspects of the present invention will be set forth in part in the description which follows, and will in part become apparent to those in the practice of the invention, when considered with the attached figures.
Referring now to the drawings, and with particular reference to
With reference to
A piston 62 is located and moveable within cylinder 48 such that a first pressure chamber 64 is defined within inner cylinder wall 46 between bottom wall 50 of cylinder housing 36 and piston 62. Piston rod 34 is coupled to piston 62 at a first end 66 of piston rod 34. Cylinder head 68 is located at top end 60 of cylinder housing 36 and includes an aperture 70 so as to allow passage of piston rod 34 therethrough. A second pressure chamber 72 is defined within inlet tube 40, outlet tube 44 and inner cylinder wall 46 between piston 62 and cylinder head 68. A cylinder collar and seal 74 is coupled to cylinder head 68 and forms a fluid-tight seal about piston rod 34 to prevent fluid leaking from second pressure chamber 72 about piston rod 34.
Pump manifold 76 is secured to bottom wall 50 of cylinder housing 36 and includes an inlet well 78 fluidly separated from an outlet well 80. Inlet well 78 includes an inlet orifice 82 in fluid communication with first tank 12 and outlet well 80 includes an outlet orifice 84 in fluid communication with second tank 14 (
As shown most clearly in
With reference to
In accordance with an aspect of the present invention, pump unit 30 may be a manually actuated pump with piston rod 34 pivotally coupled to a first end 126 of a translating rod 128 at piston rod second end 130. Second end 132 of translating rod 128 is coupled to a pump actuator, such as actuating rod 134. Actuating rod 134 may be selectively coupled to a handle 136 whereby movement of handle 136 in a first direction causes actuating rod 134 to rotate which translates translating rod 128 either upwardly or downwardly, which in turn drives piston rod in an opposing upward or downward movement whereby piston 62 engages in either a down-stroke (arrow 120) or an up-stroke (arrow 114). Movement of handle 136 in an opposing second direction reverses direction of movement of actuating rod 134, translating rod 128, piston rod 34 and piston 62 in the other of the down-stroke or up-stroke. Handle 136 may be mounted to either end 138, 140 of actuating rod 134 so as to enable left-handed or right-handed operation of pump unit 30.
In accordance with a further aspect of the present invention, translating rod 128 and actuating rod 134 may be located externally of first tank 12. Rear wall 12a of first tank 12 may also include a recess 12b wherein translating rod 128 may be positioned such that movement of translating rod 128 is not impeded by a user's body when backpack sprayer system 10 is worn against the back of the user. Additionally, while shown as described as a manually actuated pump, it should be noted by those skilled in the art that an electrically driven pump, such as but not limited to a battery powered pump, may also be employed, and that such pumps are to be considered within the teachings of the instant disclosure.
In accordance with a further aspect of the present invention, backpack sprayer system 10 may include an agitator within open internal volume 24 of first tank housing 22. As shown most clearly in
From the above description of pump unit 30, particularly in view of
The foregoing description of the preferred embodiment of the invention has been presented for the purpose of illustration and description. It is not intended to be exhaustive nor is it intended to limit the invention to the precise form disclosed. It will be apparent to those skilled in the art that the disclosed embodiments may be modified in light of the above teachings. The embodiments described are chosen to provide an illustration of principles of the invention and its practical application to enable thereby one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. Therefore, the foregoing description is to be considered exemplary, rather than limiting, and the true scope of the invention is that described in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4008984 | Scholle | Feb 1977 | A |
5636791 | Leer | Jun 1997 | A |
5984199 | Restive | Nov 1999 | A |
7007826 | Shapanus et al. | Mar 2006 | B2 |
D609773 | Abernethy et al. | Feb 2010 | S |
D633984 | Plantz | Mar 2011 | S |
8616466 | Strauss et al. | Dec 2013 | B2 |
D755926 | Wirz Luchsinger | May 2016 | S |
D760350 | Wirz Luchsinger | Jun 2016 | S |
9358563 | Kennemer et al. | Jun 2016 | B2 |
D809626 | Bonaventura et al. | Feb 2018 | S |
20060261181 | Wirz | Nov 2006 | A1 |
20150296764 | Wirz Luchsinger | Oct 2015 | A1 |
20170266621 | Barchet | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
6452796 | Feb 1997 | AU |
2532258 | Jan 2005 | CA |
344075 | Dec 2016 | MX |